Loading…

Heterochiral DNA Strand-Displacement Circuits

The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNAoligonucleotides of opposite chirality are incapable of forming contiguous Watson–Crick base pairs with each otherhas enforced a “homochiral” paradigm over the field of dynamic DNA nanotechnology. As a res...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2017-12, Vol.139 (49), p.17715-17718
Main Authors: Kabza, Adam M, Young, Brian E, Sczepanski, Jonathan T
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543
cites cdi_FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543
container_end_page 17718
container_issue 49
container_start_page 17715
container_title Journal of the American Chemical Society
container_volume 139
creator Kabza, Adam M
Young, Brian E
Sczepanski, Jonathan T
description The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNAoligonucleotides of opposite chirality are incapable of forming contiguous Watson–Crick base pairs with each otherhas enforced a “homochiral” paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA-based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for “heterochiral” DNA nanotechnology having fully interfaced d-DNA and l-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal l-DNA, suggesting applications in bioengineering and nanomedicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.
doi_str_mv 10.1021/jacs.7b10038
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1970276781</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1970276781</sourcerecordid><originalsourceid>FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543</originalsourceid><addsrcrecordid>eNptkD1PwzAQhi0EoqWwMaOODLjc2YntjFULFKmCAZgt23FEqnwUOxn4903VAgvT6aTn3lf3EHKNMENgeL8xLs6kRQCuTsgYUwY0RSZOyRgAGJVK8BG5iHEzrAlTeE5GLEPFOKoxoSvf-dC6zzKYarp8mU_fumCanC7LuK2M87VvuumiDK4vu3hJzgpTRX91nBPy8fjwvljR9evT82K-poZn0FEuRMZVphAlcssKZa0ZimGYNmXSpQCusOiF4SAc8wlKV6AUOQKmMk34hNwecreh_ep97HRdRueryjS-7aPGTAKTQioc0LsD6kIbY_CF3oayNuFbI-i9IL0XpI-CBvzmmNzb2ue_8I-Rv-r91abtQzM8-n_WDiiua8M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1970276781</pqid></control><display><type>article</type><title>Heterochiral DNA Strand-Displacement Circuits</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Kabza, Adam M ; Young, Brian E ; Sczepanski, Jonathan T</creator><creatorcontrib>Kabza, Adam M ; Young, Brian E ; Sczepanski, Jonathan T</creatorcontrib><description>The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNAoligonucleotides of opposite chirality are incapable of forming contiguous Watson–Crick base pairs with each otherhas enforced a “homochiral” paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA-based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for “heterochiral” DNA nanotechnology having fully interfaced d-DNA and l-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal l-DNA, suggesting applications in bioengineering and nanomedicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.7b10038</identifier><identifier>PMID: 29182318</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2017-12, Vol.139 (49), p.17715-17718</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543</citedby><cites>FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543</cites><orcidid>0000-0002-9275-2597</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29182318$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kabza, Adam M</creatorcontrib><creatorcontrib>Young, Brian E</creatorcontrib><creatorcontrib>Sczepanski, Jonathan T</creatorcontrib><title>Heterochiral DNA Strand-Displacement Circuits</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNAoligonucleotides of opposite chirality are incapable of forming contiguous Watson–Crick base pairs with each otherhas enforced a “homochiral” paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA-based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for “heterochiral” DNA nanotechnology having fully interfaced d-DNA and l-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal l-DNA, suggesting applications in bioengineering and nanomedicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNptkD1PwzAQhi0EoqWwMaOODLjc2YntjFULFKmCAZgt23FEqnwUOxn4903VAgvT6aTn3lf3EHKNMENgeL8xLs6kRQCuTsgYUwY0RSZOyRgAGJVK8BG5iHEzrAlTeE5GLEPFOKoxoSvf-dC6zzKYarp8mU_fumCanC7LuK2M87VvuumiDK4vu3hJzgpTRX91nBPy8fjwvljR9evT82K-poZn0FEuRMZVphAlcssKZa0ZimGYNmXSpQCusOiF4SAc8wlKV6AUOQKmMk34hNwecreh_ep97HRdRueryjS-7aPGTAKTQioc0LsD6kIbY_CF3oayNuFbI-i9IL0XpI-CBvzmmNzb2ue_8I-Rv-r91abtQzM8-n_WDiiua8M</recordid><startdate>20171213</startdate><enddate>20171213</enddate><creator>Kabza, Adam M</creator><creator>Young, Brian E</creator><creator>Sczepanski, Jonathan T</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9275-2597</orcidid></search><sort><creationdate>20171213</creationdate><title>Heterochiral DNA Strand-Displacement Circuits</title><author>Kabza, Adam M ; Young, Brian E ; Sczepanski, Jonathan T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kabza, Adam M</creatorcontrib><creatorcontrib>Young, Brian E</creatorcontrib><creatorcontrib>Sczepanski, Jonathan T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kabza, Adam M</au><au>Young, Brian E</au><au>Sczepanski, Jonathan T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterochiral DNA Strand-Displacement Circuits</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2017-12-13</date><risdate>2017</risdate><volume>139</volume><issue>49</issue><spage>17715</spage><epage>17718</epage><pages>17715-17718</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>The absence of a straightforward strategy to interface native d-DNA with its enantiomer l-DNAoligonucleotides of opposite chirality are incapable of forming contiguous Watson–Crick base pairs with each otherhas enforced a “homochiral” paradigm over the field of dynamic DNA nanotechnology. As a result, chirality, a key intrinsic property of nucleic acids, is often overlooked as a design element for engineering of DNA-based devices, potentially limiting the types of behaviors that can be achieved using these systems. Here we introduce a toehold-mediated strand-displacement methodology for transferring information between orthogonal DNA enantiomers via an achiral intermediary, opening the door for “heterochiral” DNA nanotechnology having fully interfaced d-DNA and l-DNA components. Using this approach, we demonstrate several heterochiral DNA circuits having novel capabilities, including autonomous chiral inversion of DNA sequence information and chirality-based computing. In addition, we show that heterochiral circuits can directly interface endogenous RNAs (e.g., microRNAs) with bioorthogonal l-DNA, suggesting applications in bioengineering and nanomedicine. Overall, this work establishes chirality as a design parameter for engineering of dynamic DNA nanotechnology, thereby expanding the types of architectures and behaviors that can be realized using DNA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29182318</pmid><doi>10.1021/jacs.7b10038</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-9275-2597</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2017-12, Vol.139 (49), p.17715-17718
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1970276781
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Heterochiral DNA Strand-Displacement Circuits
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T00%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterochiral%20DNA%20Strand-Displacement%20Circuits&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Kabza,%20Adam%20M&rft.date=2017-12-13&rft.volume=139&rft.issue=49&rft.spage=17715&rft.epage=17718&rft.pages=17715-17718&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.7b10038&rft_dat=%3Cproquest_cross%3E1970276781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a390t-3669389811713b2f8bba28108bbb527c500cfb1e6a306c2e417cf176d10157543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1970276781&rft_id=info:pmid/29182318&rfr_iscdi=true