Loading…
Cytoplasmic ATP-sensing Domains Regulate Gating of Skeletal Muscle ClC-1 Chloride Channels
ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle ce...
Saved in:
Published in: | The Journal of biological chemistry 2005-09, Vol.280 (37), p.32452-32458 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ClC proteins are a family of chloride channels and transporters that are found in a wide variety of prokaryotic and eukaryotic cell types. The mammalian voltage-gated chloride channel ClC-1 is important for controlling the electrical excitability of skeletal muscle. Reduced excitability of muscle cells during metabolic stress can protect cells from metabolic exhaustion and is thought to be a major factor in fatigue. Here we identify a novel mechanism linking excitability to metabolic state by showing that ClC-1 channels are modulated by ATP. The high concentration of ATP in resting muscle effectively inhibits ClC-1 activity by shifting the voltage gating to more positive potentials. ADP and AMP had similar effects to ATP, but IMP had no effect, indicating that the inhibition of ClC-1 would only be relieved under anaerobic conditions such as intense muscle activity or ischemia, when depleted ATP accumulates as IMP. The resulting increase in ClC-1 activity under these conditions would reduce muscle excitability, thus contributing to fatigue. We show further that the modulation by ATP is mediated by cystathionine β-synthase-related domains in the cytoplasmic C terminus of ClC-1. This defines a function for these domains as gating-modulatory domains sensitive to intracellular ligands, such as nucleotides, a function that is likely to be conserved in other ClC proteins. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M502890200 |