Loading…
Relationship between Hammett's parameters and in silico density functional with tandem mass ESI‐CID fragmentation: Dihydropyridines as prototypes
Over the years, with the instrumental analysis evolution, the relationships between the carried‐out results with the data of theoretical analysis in silico and the Hammett's parameters have been reported. They have been very useful for chemical characterization of small organic molecules. Thus,...
Saved in:
Published in: | Journal of mass spectrometry. 2018-03, Vol.53 (3), p.195-202 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Over the years, with the instrumental analysis evolution, the relationships between the carried‐out results with the data of theoretical analysis in silico and the Hammett's parameters have been reported. They have been very useful for chemical characterization of small organic molecules. Thus, this work aims at showing the feasibility and limitations for Hammett's and density functional theory applications in electrospray ionization–collision‐induced dissociation (ESI‐CID) fragmentation provision. For this, 13 dihydropyrimidinones para, meta, and orto monosubstituted were studied using ESI and CID in positive mode. As a result, it was observed that the main fragmentation includes the isocyanate and ethanol loses at low energy. Nevertheless, at higher energies, radical ions formed by McLafferty rearrangement were observed. The Hammett plots were correlated fragmentation profiles, showing good linearity for the [M + H]+, which does not occur to radical ions and carbocation's. These tendencies had demonstrated that the stability of protonate and activation energy of secondary ions changes with the pKa. The density functional theory studies indicated that, both nitrogen atoms in the dihydropyrimidinone's prototypes are capable of being protonated. However, the activation energy of fragmentation products is not changed. Therefore, this work has shown information, which can be useful to understand tandem mass spectrometry in ESI‐CID conditions for small organic molecules series. This is the first step for normalization of fragmentation pathway. |
---|---|
ISSN: | 1076-5174 1096-9888 |
DOI: | 10.1002/jms.4050 |