Loading…

Xylose transport in yeast for lignocellulosic ethanol production: Current status

Lignocellulosic ethanol has been considered as an alternative transportation fuel. Utilization of hemicellulosic fraction in lignocelluloses is crucial in economical production of lignocellulosic ethanol. However, this fraction has not efficiently been utilized by traditional yeast Saccharomyces cer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bioscience and bioengineering 2018-03, Vol.125 (3), p.259-267
Main Authors: Sharma, Nilesh Kumar, Behera, Shuvashish, Arora, Richa, Kumar, Sachin, Sani, Rajesh K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Lignocellulosic ethanol has been considered as an alternative transportation fuel. Utilization of hemicellulosic fraction in lignocelluloses is crucial in economical production of lignocellulosic ethanol. However, this fraction has not efficiently been utilized by traditional yeast Saccharomyces cerevisiae. Genetically modified S. cerevisiae, which can utilize xylose, has several limitations including low ethanol yield, redox imbalance, and undesired metabolite formation similar to native xylose utilizing yeasts. Besides, xylose uptake is a major issue, where sugar transport system plays an important role. These genetically modified and wild-type yeast strains have further been engineered for improved xylose uptake. Various techniques have been employed to facilitate the xylose transportation in these strains. The present review is focused on the sugar transport machineries, mechanisms of xylose transport, limitations and how to deal with xylose transport for xylose assimilation in yeast cells. The recent advances in different techniques to facilitate the xylose transportation have also been discussed.
ISSN:1389-1723
1347-4421
DOI:10.1016/j.jbiosc.2017.10.006