Loading…

Neuropathological, biochemical and molecular findings in a glutaric acidemia type 1 cohort

Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase (GCDH) activity. GA-1 is often associated with an acute encephalopathy between 6 and 18 months of age that causes striatal damage resulting in a severe dystonic movement dis...

Full description

Saved in:
Bibliographic Details
Published in:Brain (London, England : 1878) England : 1878), 2005-04, Vol.128 (4), p.711-722
Main Authors: Funk, Christopher B. R., Prasad, Asuri N., Frosk, Patrick, Sauer, Sven, Kölker, Stefan, Greenberg, Cheryl R., Del Bigio, Marc R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glutaric acidemia type 1 (GA-1) is an autosomal recessive disorder characterized by a deficiency of glutaryl-CoA dehydrogenase (GCDH) activity. GA-1 is often associated with an acute encephalopathy between 6 and 18 months of age that causes striatal damage resulting in a severe dystonic movement disorder. Ten autopsy cases have been previously described. Our goal is to understand the disorder better so that treatments can be designed. Therefore, we present the neuropathological features of six additional cases (8 months–40 years), all North American aboriginals with the identical homozygous mutation. This cohort displays similar pathological characteristics to those previously described. Four had macroencephaly. All had striatal atrophy with severe loss of medium-sized neurons. We present several novel findings. This natural time course study allows us to conclude that neuron loss occurs shortly after the encephalopathical crisis and does not progress. In addition, we demonstrate mild loss of large striatal neurons, spongiform changes restricted to brainstem white matter and a mild lymphocytic infiltrate in the early stages. Reverse transcriptase-PCR to detect the GCDH mRNA revealed normal and truncated transcripts similar to those in fibroblasts. All brain regions demonstrated markedly elevated concentrations of GA (3770–21 200 nmol/g protein) and 3-OH-GA (280–740 nmol/g protein), with no evidence of striatal specificity or age dependency. The role of organic acids as toxic agents and as osmolytes is discussed. The pathogenesis of selective neuronal loss cannot be explained on the basis of regional genetic and/or metabolic differences. A suitable animal model for GA-1 is needed.
ISSN:0006-8950
1460-2156
DOI:10.1093/brain/awh401