Loading…

comparison of biofilms from macrophytes and rocks for taste and odour producers in the St. Lawrence River

Given their widespread and prolific annual development in the St. Lawrence River (SLR), macrophytes (i.e. submerged aquatic plants) represent large surface areas for biofilm growth and potentially important sites for associated production of taste and odour (T&O) compounds. We therefore evaluate...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2007-01, Vol.55 (5), p.15-21
Main Authors: Ridal, J.J, Watson, S.B, Hickey, M.B.C
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given their widespread and prolific annual development in the St. Lawrence River (SLR), macrophytes (i.e. submerged aquatic plants) represent large surface areas for biofilm growth and potentially important sites for associated production of taste and odour (T&O) compounds. We therefore evaluated the importance of submerged macrophytes and their associated biofilms for production of T&O compounds, 2-methylisoborneol (MIB) and geosmin (GM), compared with biofilms from adjacent rocks. We also tested the hypothesis that production of these compounds would differ between macrophyte species, based on the premise that they are not inert substrates but directly influence the communities that colonise their surfaces. Samples collected from transects across the SLR between Kingston and Cornwall, ON were dominated by the flat-bladed Vallisneria spp., and the leafed Myriophyllum spicatum, Elodea canadensis, Chara spp., Potamgeton spp., and Ceratophyllum spp. Overall, MIB and GM levels in biofilms ranged widely between samples. Expressed per g dry weight of biofilm, median levels from macrophyte were 50 (range 1-5000) ng MIB g(-1) and 10 ( 0.05). Overlying water (OLW) concentrations ranged between 2-45 ng L(-1) for MIB and 5-30 ng L(-1) for GM and were not correlated with levels in adjacent biofilms. However, OLW concentrations peaked in shallow, low energy embayments consistent with enhanced production and release of MIB and GM in nearshore areas. The results support our previous work showing the importance of biofilms on various surfaces (rocks, macrophytes and zebra mussels) for MIB and GM production in the SLR, but suggest that inert surfaces like rocks are more productive sites per unit surface area than macrophytes.
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2007.157