Loading…
Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C
Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are...
Saved in:
Published in: | Journal of cellular physiology 2018-07, Vol.233 (7), p.5112-5118 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103 |
---|---|
cites | cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103 |
container_end_page | 5118 |
container_issue | 7 |
container_start_page | 5112 |
container_title | Journal of cellular physiology |
container_volume | 233 |
creator | Chen, Liujing Jiang, Fulin Qiao, Yini Li, Hong Wei, Zhangming Huang, Tu Lan, Jingxiang Xia, Yue Li, Juan |
description | Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. |
doi_str_mv | 10.1002/jcp.26336 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1974005213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974005213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AMScKOLtPNOZynBJ0Vd6E4YpslNmzpJ6kyC9N87NdWF4OrCuR-Hw4fQKcFjgjGdrLL1mErG5B4aEqySmEtB99Ew_EisBCcDdOT9CmOsFGOHaEAVJSIhyRC9PXaZhca_g4XW2Mi3ZVHU4H3kYNFZ04IPGVRRBtZGVblwpi2bOjJ1HuUBBQd1W_ZZu3RNt1hG1lRlHV1N0mN0UBjr4WR3R-j15volvYtnT7f36dUszphgMhZZuFOGFcuUlIRwJhQx0oSF0zznuGBhthTAJMeKZnOWU1rwOTeM54YSzEboou9du-ajA9_qqvTbwaaGpvOaqIRjLChhAT3_g66aztVhnaaYbPUwSQN12VOZa7x3UOi1KyvjNppgvVWug3L9rTywZ7vGbl5B_kv-OA7ApAc-Swub_5v0Q_rcV34BksqJIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019933362</pqid></control><display><type>article</type><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><source>Wiley</source><creator>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</creator><creatorcontrib>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</creatorcontrib><description>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.26336</identifier><identifier>PMID: 29215717</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bones ; Cell adhesion & migration ; Cell differentiation ; Cell Differentiation - genetics ; Cell migration ; Cell Movement - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cytoskeleton ; differentiation ; Differentiation (biology) ; Humans ; lamin A/C ; Lamin Type A - genetics ; Mechanical properties ; migration ; nucleoskeletal stiffness ; Repair ; Rigidity ; stem cell ; Stem Cell Niche - genetics ; Stem cells ; Stem Cells - metabolism ; Stiffness ; Tissue engineering ; Tissue Engineering - trends</subject><ispartof>Journal of cellular physiology, 2018-07, Vol.233 (7), p.5112-5118</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</citedby><cites>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</cites><orcidid>0000-0003-0474-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29215717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Liujing</creatorcontrib><creatorcontrib>Jiang, Fulin</creatorcontrib><creatorcontrib>Qiao, Yini</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Wei, Zhangming</creatorcontrib><creatorcontrib>Huang, Tu</creatorcontrib><creatorcontrib>Lan, Jingxiang</creatorcontrib><creatorcontrib>Xia, Yue</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</description><subject>Bones</subject><subject>Cell adhesion & migration</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoskeleton</subject><subject>differentiation</subject><subject>Differentiation (biology)</subject><subject>Humans</subject><subject>lamin A/C</subject><subject>Lamin Type A - genetics</subject><subject>Mechanical properties</subject><subject>migration</subject><subject>nucleoskeletal stiffness</subject><subject>Repair</subject><subject>Rigidity</subject><subject>stem cell</subject><subject>Stem Cell Niche - genetics</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>Stiffness</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - trends</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK0u_AMScKOLtPNOZynBJ0Vd6E4YpslNmzpJ6kyC9N87NdWF4OrCuR-Hw4fQKcFjgjGdrLL1mErG5B4aEqySmEtB99Ew_EisBCcDdOT9CmOsFGOHaEAVJSIhyRC9PXaZhca_g4XW2Mi3ZVHU4H3kYNFZ04IPGVRRBtZGVblwpi2bOjJ1HuUBBQd1W_ZZu3RNt1hG1lRlHV1N0mN0UBjr4WR3R-j15volvYtnT7f36dUszphgMhZZuFOGFcuUlIRwJhQx0oSF0zznuGBhthTAJMeKZnOWU1rwOTeM54YSzEboou9du-ajA9_qqvTbwaaGpvOaqIRjLChhAT3_g66aztVhnaaYbPUwSQN12VOZa7x3UOi1KyvjNppgvVWug3L9rTywZ7vGbl5B_kv-OA7ApAc-Swub_5v0Q_rcV34BksqJIQ</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chen, Liujing</creator><creator>Jiang, Fulin</creator><creator>Qiao, Yini</creator><creator>Li, Hong</creator><creator>Wei, Zhangming</creator><creator>Huang, Tu</creator><creator>Lan, Jingxiang</creator><creator>Xia, Yue</creator><creator>Li, Juan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0474-4114</orcidid></search><sort><creationdate>201807</creationdate><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><author>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bones</topic><topic>Cell adhesion & migration</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoskeleton</topic><topic>differentiation</topic><topic>Differentiation (biology)</topic><topic>Humans</topic><topic>lamin A/C</topic><topic>Lamin Type A - genetics</topic><topic>Mechanical properties</topic><topic>migration</topic><topic>nucleoskeletal stiffness</topic><topic>Repair</topic><topic>Rigidity</topic><topic>stem cell</topic><topic>Stem Cell Niche - genetics</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>Stiffness</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liujing</creatorcontrib><creatorcontrib>Jiang, Fulin</creatorcontrib><creatorcontrib>Qiao, Yini</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Wei, Zhangming</creatorcontrib><creatorcontrib>Huang, Tu</creatorcontrib><creatorcontrib>Lan, Jingxiang</creatorcontrib><creatorcontrib>Xia, Yue</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liujing</au><au>Jiang, Fulin</au><au>Qiao, Yini</au><au>Li, Hong</au><au>Wei, Zhangming</au><au>Huang, Tu</au><au>Lan, Jingxiang</au><au>Xia, Yue</au><au>Li, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2018-07</date><risdate>2018</risdate><volume>233</volume><issue>7</issue><spage>5112</spage><epage>5118</epage><pages>5112-5118</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation.
The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29215717</pmid><doi>10.1002/jcp.26336</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0474-4114</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9541 |
ispartof | Journal of cellular physiology, 2018-07, Vol.233 (7), p.5112-5118 |
issn | 0021-9541 1097-4652 |
language | eng |
recordid | cdi_proquest_miscellaneous_1974005213 |
source | Wiley |
subjects | Bones Cell adhesion & migration Cell differentiation Cell Differentiation - genetics Cell migration Cell Movement - genetics Cell Nucleus - genetics Cell Nucleus - metabolism Cytoskeleton differentiation Differentiation (biology) Humans lamin A/C Lamin Type A - genetics Mechanical properties migration nucleoskeletal stiffness Repair Rigidity stem cell Stem Cell Niche - genetics Stem cells Stem Cells - metabolism Stiffness Tissue engineering Tissue Engineering - trends |
title | Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleoskeletal%20stiffness%20regulates%20stem%20cell%20migration%20and%20differentiation%20through%20lamin%20A/C&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Chen,%20Liujing&rft.date=2018-07&rft.volume=233&rft.issue=7&rft.spage=5112&rft.epage=5118&rft.pages=5112-5118&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.26336&rft_dat=%3Cproquest_cross%3E1974005213%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019933362&rft_id=info:pmid/29215717&rfr_iscdi=true |