Loading…

Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C

Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cellular physiology 2018-07, Vol.233 (7), p.5112-5118
Main Authors: Chen, Liujing, Jiang, Fulin, Qiao, Yini, Li, Hong, Wei, Zhangming, Huang, Tu, Lan, Jingxiang, Xia, Yue, Li, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103
cites cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103
container_end_page 5118
container_issue 7
container_start_page 5112
container_title Journal of cellular physiology
container_volume 233
creator Chen, Liujing
Jiang, Fulin
Qiao, Yini
Li, Hong
Wei, Zhangming
Huang, Tu
Lan, Jingxiang
Xia, Yue
Li, Juan
description Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.
doi_str_mv 10.1002/jcp.26336
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1974005213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1974005213</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</originalsourceid><addsrcrecordid>eNp1kEtLw0AUhQdRbK0u_AMScKOLtPNOZynBJ0Vd6E4YpslNmzpJ6kyC9N87NdWF4OrCuR-Hw4fQKcFjgjGdrLL1mErG5B4aEqySmEtB99Ew_EisBCcDdOT9CmOsFGOHaEAVJSIhyRC9PXaZhca_g4XW2Mi3ZVHU4H3kYNFZ04IPGVRRBtZGVblwpi2bOjJ1HuUBBQd1W_ZZu3RNt1hG1lRlHV1N0mN0UBjr4WR3R-j15volvYtnT7f36dUszphgMhZZuFOGFcuUlIRwJhQx0oSF0zznuGBhthTAJMeKZnOWU1rwOTeM54YSzEboou9du-ajA9_qqvTbwaaGpvOaqIRjLChhAT3_g66aztVhnaaYbPUwSQN12VOZa7x3UOi1KyvjNppgvVWug3L9rTywZ7vGbl5B_kv-OA7ApAc-Swub_5v0Q_rcV34BksqJIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2019933362</pqid></control><display><type>article</type><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><source>Wiley</source><creator>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</creator><creatorcontrib>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</creatorcontrib><description>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</description><identifier>ISSN: 0021-9541</identifier><identifier>EISSN: 1097-4652</identifier><identifier>DOI: 10.1002/jcp.26336</identifier><identifier>PMID: 29215717</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bones ; Cell adhesion &amp; migration ; Cell differentiation ; Cell Differentiation - genetics ; Cell migration ; Cell Movement - genetics ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Cytoskeleton ; differentiation ; Differentiation (biology) ; Humans ; lamin A/C ; Lamin Type A - genetics ; Mechanical properties ; migration ; nucleoskeletal stiffness ; Repair ; Rigidity ; stem cell ; Stem Cell Niche - genetics ; Stem cells ; Stem Cells - metabolism ; Stiffness ; Tissue engineering ; Tissue Engineering - trends</subject><ispartof>Journal of cellular physiology, 2018-07, Vol.233 (7), p.5112-5118</ispartof><rights>2017 Wiley Periodicals, Inc.</rights><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</citedby><cites>FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</cites><orcidid>0000-0003-0474-4114</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29215717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Liujing</creatorcontrib><creatorcontrib>Jiang, Fulin</creatorcontrib><creatorcontrib>Qiao, Yini</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Wei, Zhangming</creatorcontrib><creatorcontrib>Huang, Tu</creatorcontrib><creatorcontrib>Lan, Jingxiang</creatorcontrib><creatorcontrib>Xia, Yue</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><title>Journal of cellular physiology</title><addtitle>J Cell Physiol</addtitle><description>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</description><subject>Bones</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell differentiation</subject><subject>Cell Differentiation - genetics</subject><subject>Cell migration</subject><subject>Cell Movement - genetics</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoskeleton</subject><subject>differentiation</subject><subject>Differentiation (biology)</subject><subject>Humans</subject><subject>lamin A/C</subject><subject>Lamin Type A - genetics</subject><subject>Mechanical properties</subject><subject>migration</subject><subject>nucleoskeletal stiffness</subject><subject>Repair</subject><subject>Rigidity</subject><subject>stem cell</subject><subject>Stem Cell Niche - genetics</subject><subject>Stem cells</subject><subject>Stem Cells - metabolism</subject><subject>Stiffness</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - trends</subject><issn>0021-9541</issn><issn>1097-4652</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLw0AUhQdRbK0u_AMScKOLtPNOZynBJ0Vd6E4YpslNmzpJ6kyC9N87NdWF4OrCuR-Hw4fQKcFjgjGdrLL1mErG5B4aEqySmEtB99Ew_EisBCcDdOT9CmOsFGOHaEAVJSIhyRC9PXaZhca_g4XW2Mi3ZVHU4H3kYNFZ04IPGVRRBtZGVblwpi2bOjJ1HuUBBQd1W_ZZu3RNt1hG1lRlHV1N0mN0UBjr4WR3R-j15volvYtnT7f36dUszphgMhZZuFOGFcuUlIRwJhQx0oSF0zznuGBhthTAJMeKZnOWU1rwOTeM54YSzEboou9du-ajA9_qqvTbwaaGpvOaqIRjLChhAT3_g66aztVhnaaYbPUwSQN12VOZa7x3UOi1KyvjNppgvVWug3L9rTywZ7vGbl5B_kv-OA7ApAc-Swub_5v0Q_rcV34BksqJIQ</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Chen, Liujing</creator><creator>Jiang, Fulin</creator><creator>Qiao, Yini</creator><creator>Li, Hong</creator><creator>Wei, Zhangming</creator><creator>Huang, Tu</creator><creator>Lan, Jingxiang</creator><creator>Xia, Yue</creator><creator>Li, Juan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0474-4114</orcidid></search><sort><creationdate>201807</creationdate><title>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</title><author>Chen, Liujing ; Jiang, Fulin ; Qiao, Yini ; Li, Hong ; Wei, Zhangming ; Huang, Tu ; Lan, Jingxiang ; Xia, Yue ; Li, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bones</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell differentiation</topic><topic>Cell Differentiation - genetics</topic><topic>Cell migration</topic><topic>Cell Movement - genetics</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoskeleton</topic><topic>differentiation</topic><topic>Differentiation (biology)</topic><topic>Humans</topic><topic>lamin A/C</topic><topic>Lamin Type A - genetics</topic><topic>Mechanical properties</topic><topic>migration</topic><topic>nucleoskeletal stiffness</topic><topic>Repair</topic><topic>Rigidity</topic><topic>stem cell</topic><topic>Stem Cell Niche - genetics</topic><topic>Stem cells</topic><topic>Stem Cells - metabolism</topic><topic>Stiffness</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Liujing</creatorcontrib><creatorcontrib>Jiang, Fulin</creatorcontrib><creatorcontrib>Qiao, Yini</creatorcontrib><creatorcontrib>Li, Hong</creatorcontrib><creatorcontrib>Wei, Zhangming</creatorcontrib><creatorcontrib>Huang, Tu</creatorcontrib><creatorcontrib>Lan, Jingxiang</creatorcontrib><creatorcontrib>Xia, Yue</creatorcontrib><creatorcontrib>Li, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cellular physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Liujing</au><au>Jiang, Fulin</au><au>Qiao, Yini</au><au>Li, Hong</au><au>Wei, Zhangming</au><au>Huang, Tu</au><au>Lan, Jingxiang</au><au>Xia, Yue</au><au>Li, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C</atitle><jtitle>Journal of cellular physiology</jtitle><addtitle>J Cell Physiol</addtitle><date>2018-07</date><risdate>2018</risdate><volume>233</volume><issue>7</issue><spage>5112</spage><epage>5118</epage><pages>5112-5118</pages><issn>0021-9541</issn><eissn>1097-4652</eissn><abstract>Stem cell‐based tissue engineering provides a prospective strategy to bone tissue repair. Bone tissue repair begins at the recruitment and directional movement of stem cells, and ultimately achieved on the directional differentiation of stem cells. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation. Nuclear lamin A/C determines cell migration through the regulation of nucleoskeletal stiffness and rigidity and involve in nuclear‐cytoskeletal coupling. Moreover, lamin A/C is the essential core module regulating stem cell differentiation. The cells with higher migration ability tend to have enhanced differentiation potential, while the optimum amount of lamin A/C in migration and differentiation of MSCs is in conflict. This contrary phenomenon may be the result of mechanical microenvironment modulation. The migration and differentiation of stem cells are regulated by nucleoskeletal stiffness. Mechanical properties of lamin A/C contribute to the nucleoskeletal stiffness and consequently to the regulation of cell migration and differentiation.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29215717</pmid><doi>10.1002/jcp.26336</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-0474-4114</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9541
ispartof Journal of cellular physiology, 2018-07, Vol.233 (7), p.5112-5118
issn 0021-9541
1097-4652
language eng
recordid cdi_proquest_miscellaneous_1974005213
source Wiley
subjects Bones
Cell adhesion & migration
Cell differentiation
Cell Differentiation - genetics
Cell migration
Cell Movement - genetics
Cell Nucleus - genetics
Cell Nucleus - metabolism
Cytoskeleton
differentiation
Differentiation (biology)
Humans
lamin A/C
Lamin Type A - genetics
Mechanical properties
migration
nucleoskeletal stiffness
Repair
Rigidity
stem cell
Stem Cell Niche - genetics
Stem cells
Stem Cells - metabolism
Stiffness
Tissue engineering
Tissue Engineering - trends
title Nucleoskeletal stiffness regulates stem cell migration and differentiation through lamin A/C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T21%3A13%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleoskeletal%20stiffness%20regulates%20stem%20cell%20migration%20and%20differentiation%20through%20lamin%20A/C&rft.jtitle=Journal%20of%20cellular%20physiology&rft.au=Chen,%20Liujing&rft.date=2018-07&rft.volume=233&rft.issue=7&rft.spage=5112&rft.epage=5118&rft.pages=5112-5118&rft.issn=0021-9541&rft.eissn=1097-4652&rft_id=info:doi/10.1002/jcp.26336&rft_dat=%3Cproquest_cross%3E1974005213%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3536-5cc3583093c9661143591a6a5718dd40f399365e364092cb3d22f4b4a34da2103%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2019933362&rft_id=info:pmid/29215717&rfr_iscdi=true