Loading…
Intersubband Landau Level Couplings Induced by In-Plane Magnetic Fields in Trilayer Graphene
We observed broken-symmetry quantum Hall effects and level crossings between spin- and valley- resolved Landau levels (LLs) in Bernal stacked trilayer graphene. When the magnetic field was tilted with respect to the sample normal from 0° to 66°, the LL crossings formed at intersections of zeroth and...
Saved in:
Published in: | Physical review letters 2017-11, Vol.119 (18), p.186802-186802, Article 186802 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We observed broken-symmetry quantum Hall effects and level crossings between spin- and valley- resolved Landau levels (LLs) in Bernal stacked trilayer graphene. When the magnetic field was tilted with respect to the sample normal from 0° to 66°, the LL crossings formed at intersections of zeroth and second LLs from monolayer-graphene-like and bilayer-graphene-like subbands, respectively, exhibited a sequence of transitions. The results indicate the LLs from different subbands are coupled by in-plane magnetic fields (B_{∥}), which was explained by developing the tight-binding model Hamiltonian of trilayer graphene under B_{∥}. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.119.186802 |