Loading…

Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed

The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density,...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2017-11, Vol.119 (20), p.204502-204502, Article 204502
Main Author: Gañán-Calvo, Alfonso M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433
cites cdi_FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433
container_end_page 204502
container_issue 20
container_start_page 204502
container_title Physical review letters
container_volume 119
creator Gañán-Calvo, Alfonso M
description The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density, surface tension, and viscosity, respectively. First, a flow field analysis at ejection yields the scaling of R with the jet velocity V as R/l_{μ}∼(V/V_{μ})^{-5/3}, where l_{μ}=μ^{2}/(ρσ) and V_{μ}=σ/μ. This resolves the scaling problem of curvature reversal, a prelude to jet formation. In addition, the energy necessary for the ejection of a jet with a volume and averaged velocity proportional to R_{o}R^{2} and V, respectively, comes from the energy excess from the total available surface energy, proportional to σR_{o}^{2}, minus the one dissipated by viscosity, proportional to μ(σR_{o}^{3}/ρ)^{1/2}. Using the scaling variable φ=(Oh^{*}-Oh)Oh^{-2}, it yields V/V_{μ}=k_{v}φ^{-3/4} and R/l_{μ}=k_{d}φ^{5/4}, which collapse published data since 1954 and resolve the scaling of R and V with k_{v}=16, k_{d}=0.6, and Oh^{*}=0.043 when gravity effects are negligible.
doi_str_mv 10.1103/PhysRevLett.119.204502
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975023476</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975023476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433</originalsourceid><addsrcrecordid>eNpNkEtPwzAQhC0EoqXwFyofuaR4Y9eOufF-KBKoj3PkJBsISpNgJ0Xl1-OqBXGa1WhmVvoIGQObADB-8fq-cTNcx9h13tCTkIkpCw_IEJjSgQIQh2TIGIdAM6YG5MS5D8YYhDI6JoNQh6C54EMy8yOlK5uaNgW97tO0Qi_WdWX9dkmXdblG60xF55mpvEVj8-W20UXT0mfs6K31x7z8RmrqnM5bxPyUHBWmcni21xFZ3t8tbh6D-OXh6eYqDjKhoi7INKZcM66EmgrkYApTAEotVcEh4jrSkVKRBD4tcinzEIoUGMrcZDkTqeB8RM53u61tPnt0XbIqXYZVZWpsepeAVh4JF0r6qNxFM9s4Z7FIWluujN0kwJItz-QfT2_oZMfTF8f7H326wvyv9guQ_wA6pnKh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975023476</pqid></control><display><type>article</type><title>Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Gañán-Calvo, Alfonso M</creator><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><description>The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density, surface tension, and viscosity, respectively. First, a flow field analysis at ejection yields the scaling of R with the jet velocity V as R/l_{μ}∼(V/V_{μ})^{-5/3}, where l_{μ}=μ^{2}/(ρσ) and V_{μ}=σ/μ. This resolves the scaling problem of curvature reversal, a prelude to jet formation. In addition, the energy necessary for the ejection of a jet with a volume and averaged velocity proportional to R_{o}R^{2} and V, respectively, comes from the energy excess from the total available surface energy, proportional to σR_{o}^{2}, minus the one dissipated by viscosity, proportional to μ(σR_{o}^{3}/ρ)^{1/2}. Using the scaling variable φ=(Oh^{*}-Oh)Oh^{-2}, it yields V/V_{μ}=k_{v}φ^{-3/4} and R/l_{μ}=k_{d}φ^{5/4}, which collapse published data since 1954 and resolve the scaling of R and V with k_{v}=16, k_{d}=0.6, and Oh^{*}=0.043 when gravity effects are negligible.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.119.204502</identifier><identifier>PMID: 29219343</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2017-11, Vol.119 (20), p.204502-204502, Article 204502</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433</citedby><cites>FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29219343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><title>Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density, surface tension, and viscosity, respectively. First, a flow field analysis at ejection yields the scaling of R with the jet velocity V as R/l_{μ}∼(V/V_{μ})^{-5/3}, where l_{μ}=μ^{2}/(ρσ) and V_{μ}=σ/μ. This resolves the scaling problem of curvature reversal, a prelude to jet formation. In addition, the energy necessary for the ejection of a jet with a volume and averaged velocity proportional to R_{o}R^{2} and V, respectively, comes from the energy excess from the total available surface energy, proportional to σR_{o}^{2}, minus the one dissipated by viscosity, proportional to μ(σR_{o}^{3}/ρ)^{1/2}. Using the scaling variable φ=(Oh^{*}-Oh)Oh^{-2}, it yields V/V_{μ}=k_{v}φ^{-3/4} and R/l_{μ}=k_{d}φ^{5/4}, which collapse published data since 1954 and resolve the scaling of R and V with k_{v}=16, k_{d}=0.6, and Oh^{*}=0.043 when gravity effects are negligible.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPwzAQhC0EoqXwFyofuaR4Y9eOufF-KBKoj3PkJBsISpNgJ0Xl1-OqBXGa1WhmVvoIGQObADB-8fq-cTNcx9h13tCTkIkpCw_IEJjSgQIQh2TIGIdAM6YG5MS5D8YYhDI6JoNQh6C54EMy8yOlK5uaNgW97tO0Qi_WdWX9dkmXdblG60xF55mpvEVj8-W20UXT0mfs6K31x7z8RmrqnM5bxPyUHBWmcni21xFZ3t8tbh6D-OXh6eYqDjKhoi7INKZcM66EmgrkYApTAEotVcEh4jrSkVKRBD4tcinzEIoUGMrcZDkTqeB8RM53u61tPnt0XbIqXYZVZWpsepeAVh4JF0r6qNxFM9s4Z7FIWluujN0kwJItz-QfT2_oZMfTF8f7H326wvyv9guQ_wA6pnKh</recordid><startdate>20171116</startdate><enddate>20171116</enddate><creator>Gañán-Calvo, Alfonso M</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171116</creationdate><title>Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed</title><author>Gañán-Calvo, Alfonso M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gañán-Calvo, Alfonso M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gañán-Calvo, Alfonso M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-11-16</date><risdate>2017</risdate><volume>119</volume><issue>20</issue><spage>204502</spage><epage>204502</epage><pages>204502-204502</pages><artnum>204502</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The collapse of a bubble of radius R_{o} at the surface of a liquid generating a liquid jet and a subsequent first drop of radius R is universally scaled using the Ohnesorge number Oh=μ/(ρσR_{o})^{1/2} and a critical value Oh^{*} below which no droplet is ejected; ρ, σ, and μ are the liquid density, surface tension, and viscosity, respectively. First, a flow field analysis at ejection yields the scaling of R with the jet velocity V as R/l_{μ}∼(V/V_{μ})^{-5/3}, where l_{μ}=μ^{2}/(ρσ) and V_{μ}=σ/μ. This resolves the scaling problem of curvature reversal, a prelude to jet formation. In addition, the energy necessary for the ejection of a jet with a volume and averaged velocity proportional to R_{o}R^{2} and V, respectively, comes from the energy excess from the total available surface energy, proportional to σR_{o}^{2}, minus the one dissipated by viscosity, proportional to μ(σR_{o}^{3}/ρ)^{1/2}. Using the scaling variable φ=(Oh^{*}-Oh)Oh^{-2}, it yields V/V_{μ}=k_{v}φ^{-3/4} and R/l_{μ}=k_{d}φ^{5/4}, which collapse published data since 1954 and resolve the scaling of R and V with k_{v}=16, k_{d}=0.6, and Oh^{*}=0.043 when gravity effects are negligible.</abstract><cop>United States</cop><pmid>29219343</pmid><doi>10.1103/PhysRevLett.119.204502</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-11, Vol.119 (20), p.204502-204502, Article 204502
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1975023476
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A25%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Revision%20of%20Bubble%20Bursting:%20Universal%20Scaling%20Laws%20of%20Top%20Jet%20Drop%20Size%20and%20Speed&rft.jtitle=Physical%20review%20letters&rft.au=Ga%C3%B1%C3%A1n-Calvo,%20Alfonso%20M&rft.date=2017-11-16&rft.volume=119&rft.issue=20&rft.spage=204502&rft.epage=204502&rft.pages=204502-204502&rft.artnum=204502&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.119.204502&rft_dat=%3Cproquest_cross%3E1975023476%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-c9eb390374754e31afaf1e6967f318398987786135fd66d21fb10e6dacd04b433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1975023476&rft_id=info:pmid/29219343&rfr_iscdi=true