Loading…

A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C

Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple‐phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) 2018-01, Vol.30 (4), p.n/a
Main Authors: Wu, Wei, Zhang, Yunya, Ding, Dong, He, Ting
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63
cites cdi_FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63
container_end_page n/a
container_issue 4
container_start_page
container_title Advanced materials (Weinheim)
container_volume 30
creator Wu, Wei
Zhang, Yunya
Ding, Dong
He, Ting
description Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple‐phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid‐state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO2–Li/Na2CO3 composite electrolyte, and Sm0.5Sr0.5CoO3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm−2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm−2 at a constant current density of 0.15 A cm−2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500–600 °C, representing a promising strategy in developing high‐performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. A 3D architectured framework is fabricated and applied as anode for high‐performing direct carbon fuel cells. The fuel cells demonstrate remarkable power densities below 600 °C, attributed to highly improved mass transfer and increased triple‐phase boundaries within the 3D anode. This approach provides a promising strategy in developing 3D functional electrodes for fuel cells and other electrochemical devices.
doi_str_mv 10.1002/adma.201704745
format article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975023599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975023599</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63</originalsourceid><addsrcrecordid>eNqF0UFu1DAUBmALgehQ2LJEFmzYZHi2YydephlKkYrKAtbGceyOqyQe7ESj7jgCR-EMHIWT4NGUIrFhZVn6_Os9_wg9J7AmAPSN7ke9pkAqKKuSP0ArwikpSpD8IVqBZLyQoqxP0JOUbgBAChCP0QmVlNQVEyv0pcEX_nr769v3jza6EEc_XeONj9bMuNWxCxM-X-yAWzsMeO_nLdaYbXATzdbPGS3R9riZQm_x1c5GPefrmR3CHgsA_PNH-xQ9cnpI9tndeYo-n7_91F4Ul1fv3rfNZWGYpLzgEiyrnXSuptSwylhCoWSamp4aTbtaaFpWVFAHTue9OtJL1ndlbV2vpRPsFL085oY0e5XMYbqtCdOUh1SkrEQNJKPXR7SL4eti06xGn0xeTU82LEkRWXGgjEuZ6at_6E1Y4pRXyKqWnOffrLJaH5WJIaVondpFP-p4qwioQ0HqUJC6Lyg_eHEXu3Sj7e_5n0YykEew94O9_U-cajYfmr_hvwGYaZq7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989550007</pqid></control><display><type>article</type><title>A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Wei ; Zhang, Yunya ; Ding, Dong ; He, Ting</creator><creatorcontrib>Wu, Wei ; Zhang, Yunya ; Ding, Dong ; He, Ting ; Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><description>Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple‐phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid‐state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO2–Li/Na2CO3 composite electrolyte, and Sm0.5Sr0.5CoO3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm−2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm−2 at a constant current density of 0.15 A cm−2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500–600 °C, representing a promising strategy in developing high‐performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. A 3D architectured framework is fabricated and applied as anode for high‐performing direct carbon fuel cells. The fuel cells demonstrate remarkable power densities below 600 °C, attributed to highly improved mass transfer and increased triple‐phase boundaries within the 3D anode. This approach provides a promising strategy in developing 3D functional electrodes for fuel cells and other electrochemical devices.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704745</identifier><identifier>PMID: 29218736</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anodes ; Carbon ; ceramic textile ; Cerium oxides ; DCFC ; direct carbon fuel cell ; Electrochemical oxidation ; Electrodes ; Electrolytes ; Electrolytic cells ; energy conversion ; Fuel cells ; Gadolinium ; interfaces ; MATERIALS SCIENCE ; Oxidation ; triple-phase boundary ; Utilization</subject><ispartof>Advanced materials (Weinheim), 2018-01, Vol.30 (4), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63</citedby><cites>FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63</cites><orcidid>0000-0002-6921-4504 ; 0000-0002-0016-4430 ; 0000-0003-2067-7361 ; 0000-0002-8877-0215 ; 0000000320677361 ; 0000000269214504 ; 0000000288770215 ; 0000000200164430</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29218736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1476801$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Yunya</creatorcontrib><creatorcontrib>Ding, Dong</creatorcontrib><creatorcontrib>He, Ting</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><title>A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple‐phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid‐state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO2–Li/Na2CO3 composite electrolyte, and Sm0.5Sr0.5CoO3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm−2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm−2 at a constant current density of 0.15 A cm−2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500–600 °C, representing a promising strategy in developing high‐performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. A 3D architectured framework is fabricated and applied as anode for high‐performing direct carbon fuel cells. The fuel cells demonstrate remarkable power densities below 600 °C, attributed to highly improved mass transfer and increased triple‐phase boundaries within the 3D anode. This approach provides a promising strategy in developing 3D functional electrodes for fuel cells and other electrochemical devices.</description><subject>Anodes</subject><subject>Carbon</subject><subject>ceramic textile</subject><subject>Cerium oxides</subject><subject>DCFC</subject><subject>direct carbon fuel cell</subject><subject>Electrochemical oxidation</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>energy conversion</subject><subject>Fuel cells</subject><subject>Gadolinium</subject><subject>interfaces</subject><subject>MATERIALS SCIENCE</subject><subject>Oxidation</subject><subject>triple-phase boundary</subject><subject>Utilization</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0UFu1DAUBmALgehQ2LJEFmzYZHi2YydephlKkYrKAtbGceyOqyQe7ESj7jgCR-EMHIWT4NGUIrFhZVn6_Os9_wg9J7AmAPSN7ke9pkAqKKuSP0ArwikpSpD8IVqBZLyQoqxP0JOUbgBAChCP0QmVlNQVEyv0pcEX_nr769v3jza6EEc_XeONj9bMuNWxCxM-X-yAWzsMeO_nLdaYbXATzdbPGS3R9riZQm_x1c5GPefrmR3CHgsA_PNH-xQ9cnpI9tndeYo-n7_91F4Ul1fv3rfNZWGYpLzgEiyrnXSuptSwylhCoWSamp4aTbtaaFpWVFAHTue9OtJL1ndlbV2vpRPsFL085oY0e5XMYbqtCdOUh1SkrEQNJKPXR7SL4eti06xGn0xeTU82LEkRWXGgjEuZ6at_6E1Y4pRXyKqWnOffrLJaH5WJIaVondpFP-p4qwioQ0HqUJC6Lyg_eHEXu3Sj7e_5n0YykEew94O9_U-cajYfmr_hvwGYaZq7</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Wu, Wei</creator><creator>Zhang, Yunya</creator><creator>Ding, Dong</creator><creator>He, Ting</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-6921-4504</orcidid><orcidid>https://orcid.org/0000-0002-0016-4430</orcidid><orcidid>https://orcid.org/0000-0003-2067-7361</orcidid><orcidid>https://orcid.org/0000-0002-8877-0215</orcidid><orcidid>https://orcid.org/0000000320677361</orcidid><orcidid>https://orcid.org/0000000269214504</orcidid><orcidid>https://orcid.org/0000000288770215</orcidid><orcidid>https://orcid.org/0000000200164430</orcidid></search><sort><creationdate>20180101</creationdate><title>A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C</title><author>Wu, Wei ; Zhang, Yunya ; Ding, Dong ; He, Ting</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Carbon</topic><topic>ceramic textile</topic><topic>Cerium oxides</topic><topic>DCFC</topic><topic>direct carbon fuel cell</topic><topic>Electrochemical oxidation</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>energy conversion</topic><topic>Fuel cells</topic><topic>Gadolinium</topic><topic>interfaces</topic><topic>MATERIALS SCIENCE</topic><topic>Oxidation</topic><topic>triple-phase boundary</topic><topic>Utilization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Wei</creatorcontrib><creatorcontrib>Zhang, Yunya</creatorcontrib><creatorcontrib>Ding, Dong</creatorcontrib><creatorcontrib>He, Ting</creatorcontrib><creatorcontrib>Idaho National Lab. (INL), Idaho Falls, ID (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Wei</au><au>Zhang, Yunya</au><au>Ding, Dong</au><au>He, Ting</au><aucorp>Idaho National Lab. (INL), Idaho Falls, ID (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Direct carbon fuel cells (DCFCs) are highly efficient power generators fueled by abundant and cheap solid carbons. However, the limited triple‐phase boundaries (TPBs) in the fuel electrode, due to the lack of direct contact among carbon, electrode, and electrolyte, inhibit the performance and result in poor fuel utilization. To address the challenges of low carbon oxidation activity and low carbon utilization, a highly efficient, 3D solid‐state architected anode is developed to enhance the performance of DCFCs below 600 °C. The cell with the 3D textile anode framework, Gd:CeO2–Li/Na2CO3 composite electrolyte, and Sm0.5Sr0.5CoO3 cathode demonstrates excellent performance with maximum power densities of 143, 196, and 325 mW cm−2 at 500, 550, and 600 °C, respectively. At 500 °C, the cells can be operated steadily with a rated power density of ≈0.13 W cm−2 at a constant current density of 0.15 A cm−2 with a carbon utilization over 85.5%. These results, for the first time, demonstrate the feasibility of directly electrochemical oxidation of solid carbon at 500–600 °C, representing a promising strategy in developing high‐performing fuel cells and other electrochemical systems via the integration of 3D architected electrodes. A 3D architectured framework is fabricated and applied as anode for high‐performing direct carbon fuel cells. The fuel cells demonstrate remarkable power densities below 600 °C, attributed to highly improved mass transfer and increased triple‐phase boundaries within the 3D anode. This approach provides a promising strategy in developing 3D functional electrodes for fuel cells and other electrochemical devices.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29218736</pmid><doi>10.1002/adma.201704745</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6921-4504</orcidid><orcidid>https://orcid.org/0000-0002-0016-4430</orcidid><orcidid>https://orcid.org/0000-0003-2067-7361</orcidid><orcidid>https://orcid.org/0000-0002-8877-0215</orcidid><orcidid>https://orcid.org/0000000320677361</orcidid><orcidid>https://orcid.org/0000000269214504</orcidid><orcidid>https://orcid.org/0000000288770215</orcidid><orcidid>https://orcid.org/0000000200164430</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-01, Vol.30 (4), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1975023599
source Wiley-Blackwell Read & Publish Collection
subjects Anodes
Carbon
ceramic textile
Cerium oxides
DCFC
direct carbon fuel cell
Electrochemical oxidation
Electrodes
Electrolytes
Electrolytic cells
energy conversion
Fuel cells
Gadolinium
interfaces
MATERIALS SCIENCE
Oxidation
triple-phase boundary
Utilization
title A High‐Performing Direct Carbon Fuel Cell with a 3D Architectured Anode Operated Below 600 °C
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A41%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20High%E2%80%90Performing%20Direct%20Carbon%20Fuel%20Cell%20with%20a%203D%20Architectured%20Anode%20Operated%20Below%20600%20%C2%B0C&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Wu,%20Wei&rft.aucorp=Idaho%20National%20Lab.%20(INL),%20Idaho%20Falls,%20ID%20(United%20States)&rft.date=2018-01-01&rft.volume=30&rft.issue=4&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704745&rft_dat=%3Cproquest_osti_%3E1975023599%3C/proquest_osti_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3925-590e38f9ff822c37ce12043a2cd2ca2b86a247262f0fa093b1d93db48efda9f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989550007&rft_id=info:pmid/29218736&rfr_iscdi=true