Loading…
A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent
The frequent use of antibiotics against microbial infections may lead to the emergence of antibiotic resistant microbial strains. To overcome these microbial strains, we need to fabricate alternative materials which can handle them. It is for this reason, we have fabricated cellulose (CE) based filt...
Saved in:
Published in: | International journal of biological macromolecules 2018-03, Vol.108, p.455-461 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The frequent use of antibiotics against microbial infections may lead to the emergence of antibiotic resistant microbial strains. To overcome these microbial strains, we need to fabricate alternative materials which can handle them. It is for this reason, we have fabricated cellulose (CE) based filter paper (FP) composite scaffolds comprising of adsorbed chitosan (CS) and sliver (Ag) nanoparticles (NPs). The AgNPs are incorporated in the CS layer of the composite scaffold. Prior to evaluate the efficacy of the scaffolds against gram positive and gram negative bacterial strains, the scaffolds were characterized for the presence of the Ag NPs with field emission scanning electron microscope (FE-SEM), fourier transform infrared (FTIR) spectroscopy and x-ray diffractometer (XRD). These techniques confirmed the presence of Ag NPs in the composite scaffold. The biocompatibility of the scaffolds was assessed by subjecting pristine FP, CS adsorbed FP (CS-FP) and Ag loaded CS-FP (Ag-CS-FP) composite scaffolds to in vitro studies. From the data obtained, it was observed that NIH3T3 fibroblastic cells adhered and proliferated onto all the scaffolds. Furthermore, the scaffolds exhibited good antibacterial activity against both strains of bacteria. It is, therefore, concluded that these scaffolds could find potential application in biomedical field, particularly as a wound dressing agent. |
---|---|
ISSN: | 0141-8130 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2017.12.022 |