Loading…

The infant motor system predicts actions based on visual statistical learning

Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowl...

Full description

Saved in:
Bibliographic Details
Published in:NeuroImage (Orlando, Fla.) Fla.), 2019-01, Vol.185, p.947-954
Main Authors: Monroy, Claire D., Meyer, Marlene, Schröer, Lisanne, Gerson, Sarah A., Hunnius, Sabine
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823
cites cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823
container_end_page 954
container_issue
container_start_page 947
container_title NeuroImage (Orlando, Fla.)
container_volume 185
creator Monroy, Claire D.
Meyer, Marlene
Schröer, Lisanne
Gerson, Sarah A.
Hunnius, Sabine
description Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction. •We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.
doi_str_mv 10.1016/j.neuroimage.2017.12.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975592142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917310303</els_id><sourcerecordid>2190986002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</originalsourceid><addsrcrecordid>eNqFkEtr3TAQRkVpaR7tXwiCbrqxo5El21o2IW0CKd2kayHL41QXW7qV5ED-fWVukkI2Wc0Hc-bBIYQCq4FBe76rPa4xuMXcY80ZdDXwujTekWNgSlZKdvz9lmVT9QDqiJyktGOMKRD9R3LEFeeStc0x-Xn3B6nzk_GZLiGHSNNjyrjQfcTR2ZyosdkFn-hgEo40ePrg0mpmmrLJLmVnS57RRO_8_SfyYTJzws9P9ZT8_n51d3ld3f76cXP57bayQvJc9UKMjeyEgHYQphOg1CRHw6TqJgPT0KpetbzFxg7csBGnEZXpgQ0dSm563pySr4e9-xj-rpiyXlyyOM_GY1iTBtVJqTiIDf3yCt2FNfryneagmOpbxjaqP1A2hpQiTnofi934qIHpTbne6f_K9aZcA9elUUbPng6sw4Ljy-Cz4wJcHAAsRh4cRp2sQ2-L34g26zG4t6_8A8HBlz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190986002</pqid></control><display><type>article</type><title>The infant motor system predicts actions based on visual statistical learning</title><source>Elsevier</source><creator>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</creator><creatorcontrib>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</creatorcontrib><description>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction. •We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.12.016</identifier><identifier>PMID: 29225063</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action prediction ; Anticipation, Psychological - physiology ; Babies ; Brain - physiology ; EEG ; Electroencephalography ; Female ; Humans ; Hypotheses ; Infant ; Infants ; Knowledge ; Learning - physiology ; Male ; Motor Activity ; Motor skill learning ; Mu rhythm ; Sensorimotor integration ; Statistical learning ; Statistics ; Studies ; Visual discrimination learning</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-01, Vol.185, p.947-954</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</citedby><cites>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29225063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroy, Claire D.</creatorcontrib><creatorcontrib>Meyer, Marlene</creatorcontrib><creatorcontrib>Schröer, Lisanne</creatorcontrib><creatorcontrib>Gerson, Sarah A.</creatorcontrib><creatorcontrib>Hunnius, Sabine</creatorcontrib><title>The infant motor system predicts actions based on visual statistical learning</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction. •We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</description><subject>Action prediction</subject><subject>Anticipation, Psychological - physiology</subject><subject>Babies</subject><subject>Brain - physiology</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infant</subject><subject>Infants</subject><subject>Knowledge</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Motor Activity</subject><subject>Motor skill learning</subject><subject>Mu rhythm</subject><subject>Sensorimotor integration</subject><subject>Statistical learning</subject><subject>Statistics</subject><subject>Studies</subject><subject>Visual discrimination learning</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr3TAQRkVpaR7tXwiCbrqxo5El21o2IW0CKd2kayHL41QXW7qV5ED-fWVukkI2Wc0Hc-bBIYQCq4FBe76rPa4xuMXcY80ZdDXwujTekWNgSlZKdvz9lmVT9QDqiJyktGOMKRD9R3LEFeeStc0x-Xn3B6nzk_GZLiGHSNNjyrjQfcTR2ZyosdkFn-hgEo40ePrg0mpmmrLJLmVnS57RRO_8_SfyYTJzws9P9ZT8_n51d3ld3f76cXP57bayQvJc9UKMjeyEgHYQphOg1CRHw6TqJgPT0KpetbzFxg7csBGnEZXpgQ0dSm563pySr4e9-xj-rpiyXlyyOM_GY1iTBtVJqTiIDf3yCt2FNfryneagmOpbxjaqP1A2hpQiTnofi934qIHpTbne6f_K9aZcA9elUUbPng6sw4Ljy-Cz4wJcHAAsRh4cRp2sQ2-L34g26zG4t6_8A8HBlz8</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Monroy, Claire D.</creator><creator>Meyer, Marlene</creator><creator>Schröer, Lisanne</creator><creator>Gerson, Sarah A.</creator><creator>Hunnius, Sabine</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190115</creationdate><title>The infant motor system predicts actions based on visual statistical learning</title><author>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action prediction</topic><topic>Anticipation, Psychological - physiology</topic><topic>Babies</topic><topic>Brain - physiology</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infant</topic><topic>Infants</topic><topic>Knowledge</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Motor Activity</topic><topic>Motor skill learning</topic><topic>Mu rhythm</topic><topic>Sensorimotor integration</topic><topic>Statistical learning</topic><topic>Statistics</topic><topic>Studies</topic><topic>Visual discrimination learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroy, Claire D.</creatorcontrib><creatorcontrib>Meyer, Marlene</creatorcontrib><creatorcontrib>Schröer, Lisanne</creatorcontrib><creatorcontrib>Gerson, Sarah A.</creatorcontrib><creatorcontrib>Hunnius, Sabine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroy, Claire D.</au><au>Meyer, Marlene</au><au>Schröer, Lisanne</au><au>Gerson, Sarah A.</au><au>Hunnius, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The infant motor system predicts actions based on visual statistical learning</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>185</volume><spage>947</spage><epage>954</epage><pages>947-954</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction. •We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29225063</pmid><doi>10.1016/j.neuroimage.2017.12.016</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-8119
ispartof NeuroImage (Orlando, Fla.), 2019-01, Vol.185, p.947-954
issn 1053-8119
1095-9572
language eng
recordid cdi_proquest_miscellaneous_1975592142
source Elsevier
subjects Action prediction
Anticipation, Psychological - physiology
Babies
Brain - physiology
EEG
Electroencephalography
Female
Humans
Hypotheses
Infant
Infants
Knowledge
Learning - physiology
Male
Motor Activity
Motor skill learning
Mu rhythm
Sensorimotor integration
Statistical learning
Statistics
Studies
Visual discrimination learning
title The infant motor system predicts actions based on visual statistical learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20infant%20motor%20system%20predicts%20actions%20based%20on%20visual%20statistical%20learning&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Monroy,%20Claire%20D.&rft.date=2019-01-15&rft.volume=185&rft.spage=947&rft.epage=954&rft.pages=947-954&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.12.016&rft_dat=%3Cproquest_cross%3E2190986002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190986002&rft_id=info:pmid/29225063&rfr_iscdi=true