Loading…
The infant motor system predicts actions based on visual statistical learning
Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowl...
Saved in:
Published in: | NeuroImage (Orlando, Fla.) Fla.), 2019-01, Vol.185, p.947-954 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823 |
---|---|
cites | cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823 |
container_end_page | 954 |
container_issue | |
container_start_page | 947 |
container_title | NeuroImage (Orlando, Fla.) |
container_volume | 185 |
creator | Monroy, Claire D. Meyer, Marlene Schröer, Lisanne Gerson, Sarah A. Hunnius, Sabine |
description | Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction.
•We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network. |
doi_str_mv | 10.1016/j.neuroimage.2017.12.016 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975592142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1053811917310303</els_id><sourcerecordid>2190986002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</originalsourceid><addsrcrecordid>eNqFkEtr3TAQRkVpaR7tXwiCbrqxo5El21o2IW0CKd2kayHL41QXW7qV5ED-fWVukkI2Wc0Hc-bBIYQCq4FBe76rPa4xuMXcY80ZdDXwujTekWNgSlZKdvz9lmVT9QDqiJyktGOMKRD9R3LEFeeStc0x-Xn3B6nzk_GZLiGHSNNjyrjQfcTR2ZyosdkFn-hgEo40ePrg0mpmmrLJLmVnS57RRO_8_SfyYTJzws9P9ZT8_n51d3ld3f76cXP57bayQvJc9UKMjeyEgHYQphOg1CRHw6TqJgPT0KpetbzFxg7csBGnEZXpgQ0dSm563pySr4e9-xj-rpiyXlyyOM_GY1iTBtVJqTiIDf3yCt2FNfryneagmOpbxjaqP1A2hpQiTnofi934qIHpTbne6f_K9aZcA9elUUbPng6sw4Ljy-Cz4wJcHAAsRh4cRp2sQ2-L34g26zG4t6_8A8HBlz8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2190986002</pqid></control><display><type>article</type><title>The infant motor system predicts actions based on visual statistical learning</title><source>Elsevier</source><creator>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</creator><creatorcontrib>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</creatorcontrib><description>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction.
•We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</description><identifier>ISSN: 1053-8119</identifier><identifier>EISSN: 1095-9572</identifier><identifier>DOI: 10.1016/j.neuroimage.2017.12.016</identifier><identifier>PMID: 29225063</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Action prediction ; Anticipation, Psychological - physiology ; Babies ; Brain - physiology ; EEG ; Electroencephalography ; Female ; Humans ; Hypotheses ; Infant ; Infants ; Knowledge ; Learning - physiology ; Male ; Motor Activity ; Motor skill learning ; Mu rhythm ; Sensorimotor integration ; Statistical learning ; Statistics ; Studies ; Visual discrimination learning</subject><ispartof>NeuroImage (Orlando, Fla.), 2019-01, Vol.185, p.947-954</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Jan 15, 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</citedby><cites>FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29225063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Monroy, Claire D.</creatorcontrib><creatorcontrib>Meyer, Marlene</creatorcontrib><creatorcontrib>Schröer, Lisanne</creatorcontrib><creatorcontrib>Gerson, Sarah A.</creatorcontrib><creatorcontrib>Hunnius, Sabine</creatorcontrib><title>The infant motor system predicts actions based on visual statistical learning</title><title>NeuroImage (Orlando, Fla.)</title><addtitle>Neuroimage</addtitle><description>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction.
•We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</description><subject>Action prediction</subject><subject>Anticipation, Psychological - physiology</subject><subject>Babies</subject><subject>Brain - physiology</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Female</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Infant</subject><subject>Infants</subject><subject>Knowledge</subject><subject>Learning - physiology</subject><subject>Male</subject><subject>Motor Activity</subject><subject>Motor skill learning</subject><subject>Mu rhythm</subject><subject>Sensorimotor integration</subject><subject>Statistical learning</subject><subject>Statistics</subject><subject>Studies</subject><subject>Visual discrimination learning</subject><issn>1053-8119</issn><issn>1095-9572</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkEtr3TAQRkVpaR7tXwiCbrqxo5El21o2IW0CKd2kayHL41QXW7qV5ED-fWVukkI2Wc0Hc-bBIYQCq4FBe76rPa4xuMXcY80ZdDXwujTekWNgSlZKdvz9lmVT9QDqiJyktGOMKRD9R3LEFeeStc0x-Xn3B6nzk_GZLiGHSNNjyrjQfcTR2ZyosdkFn-hgEo40ePrg0mpmmrLJLmVnS57RRO_8_SfyYTJzws9P9ZT8_n51d3ld3f76cXP57bayQvJc9UKMjeyEgHYQphOg1CRHw6TqJgPT0KpetbzFxg7csBGnEZXpgQ0dSm563pySr4e9-xj-rpiyXlyyOM_GY1iTBtVJqTiIDf3yCt2FNfryneagmOpbxjaqP1A2hpQiTnofi934qIHpTbne6f_K9aZcA9elUUbPng6sw4Ljy-Cz4wJcHAAsRh4cRp2sQ2-L34g26zG4t6_8A8HBlz8</recordid><startdate>20190115</startdate><enddate>20190115</enddate><creator>Monroy, Claire D.</creator><creator>Meyer, Marlene</creator><creator>Schröer, Lisanne</creator><creator>Gerson, Sarah A.</creator><creator>Hunnius, Sabine</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20190115</creationdate><title>The infant motor system predicts actions based on visual statistical learning</title><author>Monroy, Claire D. ; Meyer, Marlene ; Schröer, Lisanne ; Gerson, Sarah A. ; Hunnius, Sabine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Action prediction</topic><topic>Anticipation, Psychological - physiology</topic><topic>Babies</topic><topic>Brain - physiology</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Female</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Infant</topic><topic>Infants</topic><topic>Knowledge</topic><topic>Learning - physiology</topic><topic>Male</topic><topic>Motor Activity</topic><topic>Motor skill learning</topic><topic>Mu rhythm</topic><topic>Sensorimotor integration</topic><topic>Statistical learning</topic><topic>Statistics</topic><topic>Studies</topic><topic>Visual discrimination learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Monroy, Claire D.</creatorcontrib><creatorcontrib>Meyer, Marlene</creatorcontrib><creatorcontrib>Schröer, Lisanne</creatorcontrib><creatorcontrib>Gerson, Sarah A.</creatorcontrib><creatorcontrib>Hunnius, Sabine</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Psychology Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NeuroImage (Orlando, Fla.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Monroy, Claire D.</au><au>Meyer, Marlene</au><au>Schröer, Lisanne</au><au>Gerson, Sarah A.</au><au>Hunnius, Sabine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The infant motor system predicts actions based on visual statistical learning</atitle><jtitle>NeuroImage (Orlando, Fla.)</jtitle><addtitle>Neuroimage</addtitle><date>2019-01-15</date><risdate>2019</risdate><volume>185</volume><spage>947</spage><epage>954</epage><pages>947-954</pages><issn>1053-8119</issn><eissn>1095-9572</eissn><abstract>Motor theories of action prediction propose that our motor system combines prior knowledge with incoming sensory input to predict other people's actions. This prior knowledge can be acquired through observational experience, with statistical learning being one candidate mechanism. But can knowledge learned through observation alone transfer into predictions generated in the motor system? To examine this question, we first trained infants at home with videos of an unfamiliar action sequence featuring statistical regularities. At test, motor activity was measured using EEG and compared during perceptually identical time windows within the sequence that preceded actions which were either predictable (deterministic) or not predictable (random). Findings revealed increased motor activity preceding the deterministic but not the random actions, providing the first evidence that the infant motor system can use knowledge from statistical learning to predict upcoming actions. As such, these results support theories in which the motor system underlies action prediction.
•We investigated whether statistical learning can result in predictive motor activation in the infant brain.•Mu rhythm suppression, an index of motor activation, occurred prior to actions that were statistically deterministic•These findings show that knowledge gained via observation translates into action predictions generated in the motor system•The functional role of infant statistical learning skills extends to the development of the human action-observation network.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29225063</pmid><doi>10.1016/j.neuroimage.2017.12.016</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-8119 |
ispartof | NeuroImage (Orlando, Fla.), 2019-01, Vol.185, p.947-954 |
issn | 1053-8119 1095-9572 |
language | eng |
recordid | cdi_proquest_miscellaneous_1975592142 |
source | Elsevier |
subjects | Action prediction Anticipation, Psychological - physiology Babies Brain - physiology EEG Electroencephalography Female Humans Hypotheses Infant Infants Knowledge Learning - physiology Male Motor Activity Motor skill learning Mu rhythm Sensorimotor integration Statistical learning Statistics Studies Visual discrimination learning |
title | The infant motor system predicts actions based on visual statistical learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T14%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20infant%20motor%20system%20predicts%20actions%20based%20on%20visual%20statistical%20learning&rft.jtitle=NeuroImage%20(Orlando,%20Fla.)&rft.au=Monroy,%20Claire%20D.&rft.date=2019-01-15&rft.volume=185&rft.spage=947&rft.epage=954&rft.pages=947-954&rft.issn=1053-8119&rft.eissn=1095-9572&rft_id=info:doi/10.1016/j.neuroimage.2017.12.016&rft_dat=%3Cproquest_cross%3E2190986002%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c452t-844d3574416b4a74199f5da0597fa1fb6989626e3cb2a0defde9a810b7e52a823%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2190986002&rft_id=info:pmid/29225063&rfr_iscdi=true |