Loading…

Re-engineering the two-component systems as light-regulated in Escherichia coli

Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biosciences 2017-12, Vol.42 (4), p.565-573
Main Authors: Ma, Siya, Luo, Siwei, Wu, Li, Liang, Zhi, Wu, Jia-Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis , so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.
ISSN:0250-5991
0973-7138
DOI:10.1007/s12038-017-9711-8