Loading…

Re-engineering the two-component systems as light-regulated in Escherichia coli

Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biosciences 2017-12, Vol.42 (4), p.565-573
Main Authors: Ma, Siya, Luo, Siwei, Wu, Li, Liang, Zhi, Wu, Jia-Rui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33
cites cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33
container_end_page 573
container_issue 4
container_start_page 565
container_title Journal of biosciences
container_volume 42
creator Ma, Siya
Luo, Siwei
Wu, Li
Liang, Zhi
Wu, Jia-Rui
description Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis , so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.
doi_str_mv 10.1007/s12038-017-9711-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975998133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967781377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotn78AC-y4MVLNJOYTnKUUj9AEETPYTedbVf2oya7SP-9Ka0igqfM4XnfyTyMnYG4AiHwOoIUynAByC0CcLPHxsKi4gjK7KdZasG1tTBiRzG-CwH2RolDNpJWSmtQj9nzC3FqF1VLFKp2kfVLyvrPjvuuWXUttX0W17GnJmZ5zOpqsex5oMVQ5z3Ns6rNZtEvU9IvqzzzXV2dsIMyryOd7t5j9nY3e50-8Kfn-8fp7RP3CmXPNarCgLVzsNJo7SVSLkurTI5loX2hkYQ2hbDKapyQKInI31gshfIApVLH7HLbuwrdx0Cxd00VPdV13lI3RAcW0-EG1Aa9-IO-d0No0-8SNUFMEGKiYEv50MUYqHSrUDV5WDsQbmPbbW27ZNttbDuTMue75qFoaP6T-NabALkF4mpjl8Kv1f-2fgEkoYll</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967781377</pqid></control><display><type>article</type><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><source>Springer Nature</source><creator>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</creator><creatorcontrib>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</creatorcontrib><description>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis , so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</description><identifier>ISSN: 0250-5991</identifier><identifier>EISSN: 0973-7138</identifier><identifier>DOI: 10.1007/s12038-017-9711-8</identifier><identifier>PMID: 29229875</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Bacteria ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Chimeras ; Cyanobacteria ; Detection ; E coli ; Environmental effects ; Escherichia coli ; External stimuli ; Frequency dependence ; Frequency response ; Fusion protein ; Genes ; Genetics ; Histidine ; Information processing ; Kinases ; Libraries ; Life Sciences ; Light ; Microbiology ; Optics ; Phosphorylation ; Plant Sciences ; Protein kinase ; Proteins ; Reengineering ; Sensors ; Stability ; Stimuli ; Tissue engineering ; Zoology</subject><ispartof>Journal of biosciences, 2017-12, Vol.42 (4), p.565-573</ispartof><rights>Indian Academy of Sciences 2017</rights><rights>Journal of Biosciences is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</citedby><cites>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Siya</creatorcontrib><creatorcontrib>Luo, Siwei</creatorcontrib><creatorcontrib>Wu, Li</creatorcontrib><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Wu, Jia-Rui</creatorcontrib><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><title>Journal of biosciences</title><addtitle>J Biosci</addtitle><addtitle>J Biosci</addtitle><description>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis , so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</description><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Chimeras</subject><subject>Cyanobacteria</subject><subject>Detection</subject><subject>E coli</subject><subject>Environmental effects</subject><subject>Escherichia coli</subject><subject>External stimuli</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>Fusion protein</subject><subject>Genes</subject><subject>Genetics</subject><subject>Histidine</subject><subject>Information processing</subject><subject>Kinases</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microbiology</subject><subject>Optics</subject><subject>Phosphorylation</subject><subject>Plant Sciences</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Sensors</subject><subject>Stability</subject><subject>Stimuli</subject><subject>Tissue engineering</subject><subject>Zoology</subject><issn>0250-5991</issn><issn>0973-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotn78AC-y4MVLNJOYTnKUUj9AEETPYTedbVf2oya7SP-9Ka0igqfM4XnfyTyMnYG4AiHwOoIUynAByC0CcLPHxsKi4gjK7KdZasG1tTBiRzG-CwH2RolDNpJWSmtQj9nzC3FqF1VLFKp2kfVLyvrPjvuuWXUttX0W17GnJmZ5zOpqsex5oMVQ5z3Ns6rNZtEvU9IvqzzzXV2dsIMyryOd7t5j9nY3e50-8Kfn-8fp7RP3CmXPNarCgLVzsNJo7SVSLkurTI5loX2hkYQ2hbDKapyQKInI31gshfIApVLH7HLbuwrdx0Cxd00VPdV13lI3RAcW0-EG1Aa9-IO-d0No0-8SNUFMEGKiYEv50MUYqHSrUDV5WDsQbmPbbW27ZNttbDuTMue75qFoaP6T-NabALkF4mpjl8Kv1f-2fgEkoYll</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ma, Siya</creator><creator>Luo, Siwei</creator><creator>Wu, Li</creator><creator>Liang, Zhi</creator><creator>Wu, Jia-Rui</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><author>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Chimeras</topic><topic>Cyanobacteria</topic><topic>Detection</topic><topic>E coli</topic><topic>Environmental effects</topic><topic>Escherichia coli</topic><topic>External stimuli</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>Fusion protein</topic><topic>Genes</topic><topic>Genetics</topic><topic>Histidine</topic><topic>Information processing</topic><topic>Kinases</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microbiology</topic><topic>Optics</topic><topic>Phosphorylation</topic><topic>Plant Sciences</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Sensors</topic><topic>Stability</topic><topic>Stimuli</topic><topic>Tissue engineering</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Siya</creatorcontrib><creatorcontrib>Luo, Siwei</creatorcontrib><creatorcontrib>Wu, Li</creatorcontrib><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Wu, Jia-Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Siya</au><au>Luo, Siwei</au><au>Wu, Li</au><au>Liang, Zhi</au><au>Wu, Jia-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-engineering the two-component systems as light-regulated in Escherichia coli</atitle><jtitle>Journal of biosciences</jtitle><stitle>J Biosci</stitle><addtitle>J Biosci</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>42</volume><issue>4</issue><spage>565</spage><epage>573</epage><pages>565-573</pages><issn>0250-5991</issn><eissn>0973-7138</eissn><abstract>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in Escherichia coli as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from Cyanobacteria Synechocystis , so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>29229875</pmid><doi>10.1007/s12038-017-9711-8</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0250-5991
ispartof Journal of biosciences, 2017-12, Vol.42 (4), p.565-573
issn 0250-5991
0973-7138
language eng
recordid cdi_proquest_miscellaneous_1975998133
source Springer Nature
subjects Bacteria
Biomedical and Life Sciences
Biomedicine
Cell Biology
Chimeras
Cyanobacteria
Detection
E coli
Environmental effects
Escherichia coli
External stimuli
Frequency dependence
Frequency response
Fusion protein
Genes
Genetics
Histidine
Information processing
Kinases
Libraries
Life Sciences
Light
Microbiology
Optics
Phosphorylation
Plant Sciences
Protein kinase
Proteins
Reengineering
Sensors
Stability
Stimuli
Tissue engineering
Zoology
title Re-engineering the two-component systems as light-regulated in Escherichia coli
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-engineering%20the%20two-component%20systems%20as%20light-regulated%20in%20Escherichia%20coli&rft.jtitle=Journal%20of%20biosciences&rft.au=Ma,%20Siya&rft.date=2017-12-01&rft.volume=42&rft.issue=4&rft.spage=565&rft.epage=573&rft.pages=565-573&rft.issn=0250-5991&rft.eissn=0973-7138&rft_id=info:doi/10.1007/s12038-017-9711-8&rft_dat=%3Cproquest_cross%3E1967781377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967781377&rft_id=info:pmid/29229875&rfr_iscdi=true