Loading…
Re-engineering the two-component systems as light-regulated in Escherichia coli
Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator p...
Saved in:
Published in: | Journal of biosciences 2017-12, Vol.42 (4), p.565-573 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33 |
container_end_page | 573 |
container_issue | 4 |
container_start_page | 565 |
container_title | Journal of biosciences |
container_volume | 42 |
creator | Ma, Siya Luo, Siwei Wu, Li Liang, Zhi Wu, Jia-Rui |
description | Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in
Escherichia coli
as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from
Cyanobacteria Synechocystis
, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach. |
doi_str_mv | 10.1007/s12038-017-9711-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975998133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1967781377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMotn78AC-y4MVLNJOYTnKUUj9AEETPYTedbVf2oya7SP-9Ka0igqfM4XnfyTyMnYG4AiHwOoIUynAByC0CcLPHxsKi4gjK7KdZasG1tTBiRzG-CwH2RolDNpJWSmtQj9nzC3FqF1VLFKp2kfVLyvrPjvuuWXUttX0W17GnJmZ5zOpqsex5oMVQ5z3Ns6rNZtEvU9IvqzzzXV2dsIMyryOd7t5j9nY3e50-8Kfn-8fp7RP3CmXPNarCgLVzsNJo7SVSLkurTI5loX2hkYQ2hbDKapyQKInI31gshfIApVLH7HLbuwrdx0Cxd00VPdV13lI3RAcW0-EG1Aa9-IO-d0No0-8SNUFMEGKiYEv50MUYqHSrUDV5WDsQbmPbbW27ZNttbDuTMue75qFoaP6T-NabALkF4mpjl8Kv1f-2fgEkoYll</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1967781377</pqid></control><display><type>article</type><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><source>Springer Nature</source><creator>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</creator><creatorcontrib>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</creatorcontrib><description>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in
Escherichia coli
as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from
Cyanobacteria Synechocystis
, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</description><identifier>ISSN: 0250-5991</identifier><identifier>EISSN: 0973-7138</identifier><identifier>DOI: 10.1007/s12038-017-9711-8</identifier><identifier>PMID: 29229875</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Bacteria ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Chimeras ; Cyanobacteria ; Detection ; E coli ; Environmental effects ; Escherichia coli ; External stimuli ; Frequency dependence ; Frequency response ; Fusion protein ; Genes ; Genetics ; Histidine ; Information processing ; Kinases ; Libraries ; Life Sciences ; Light ; Microbiology ; Optics ; Phosphorylation ; Plant Sciences ; Protein kinase ; Proteins ; Reengineering ; Sensors ; Stability ; Stimuli ; Tissue engineering ; Zoology</subject><ispartof>Journal of biosciences, 2017-12, Vol.42 (4), p.565-573</ispartof><rights>Indian Academy of Sciences 2017</rights><rights>Journal of Biosciences is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</citedby><cites>FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229875$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ma, Siya</creatorcontrib><creatorcontrib>Luo, Siwei</creatorcontrib><creatorcontrib>Wu, Li</creatorcontrib><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Wu, Jia-Rui</creatorcontrib><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><title>Journal of biosciences</title><addtitle>J Biosci</addtitle><addtitle>J Biosci</addtitle><description>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in
Escherichia coli
as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from
Cyanobacteria Synechocystis
, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</description><subject>Bacteria</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Chimeras</subject><subject>Cyanobacteria</subject><subject>Detection</subject><subject>E coli</subject><subject>Environmental effects</subject><subject>Escherichia coli</subject><subject>External stimuli</subject><subject>Frequency dependence</subject><subject>Frequency response</subject><subject>Fusion protein</subject><subject>Genes</subject><subject>Genetics</subject><subject>Histidine</subject><subject>Information processing</subject><subject>Kinases</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Light</subject><subject>Microbiology</subject><subject>Optics</subject><subject>Phosphorylation</subject><subject>Plant Sciences</subject><subject>Protein kinase</subject><subject>Proteins</subject><subject>Reengineering</subject><subject>Sensors</subject><subject>Stability</subject><subject>Stimuli</subject><subject>Tissue engineering</subject><subject>Zoology</subject><issn>0250-5991</issn><issn>0973-7138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMotn78AC-y4MVLNJOYTnKUUj9AEETPYTedbVf2oya7SP-9Ka0igqfM4XnfyTyMnYG4AiHwOoIUynAByC0CcLPHxsKi4gjK7KdZasG1tTBiRzG-CwH2RolDNpJWSmtQj9nzC3FqF1VLFKp2kfVLyvrPjvuuWXUttX0W17GnJmZ5zOpqsex5oMVQ5z3Ns6rNZtEvU9IvqzzzXV2dsIMyryOd7t5j9nY3e50-8Kfn-8fp7RP3CmXPNarCgLVzsNJo7SVSLkurTI5loX2hkYQ2hbDKapyQKInI31gshfIApVLH7HLbuwrdx0Cxd00VPdV13lI3RAcW0-EG1Aa9-IO-d0No0-8SNUFMEGKiYEv50MUYqHSrUDV5WDsQbmPbbW27ZNttbDuTMue75qFoaP6T-NabALkF4mpjl8Kv1f-2fgEkoYll</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Ma, Siya</creator><creator>Luo, Siwei</creator><creator>Wu, Li</creator><creator>Liang, Zhi</creator><creator>Wu, Jia-Rui</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H99</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.F</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Re-engineering the two-component systems as light-regulated in Escherichia coli</title><author>Ma, Siya ; Luo, Siwei ; Wu, Li ; Liang, Zhi ; Wu, Jia-Rui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Chimeras</topic><topic>Cyanobacteria</topic><topic>Detection</topic><topic>E coli</topic><topic>Environmental effects</topic><topic>Escherichia coli</topic><topic>External stimuli</topic><topic>Frequency dependence</topic><topic>Frequency response</topic><topic>Fusion protein</topic><topic>Genes</topic><topic>Genetics</topic><topic>Histidine</topic><topic>Information processing</topic><topic>Kinases</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Light</topic><topic>Microbiology</topic><topic>Optics</topic><topic>Phosphorylation</topic><topic>Plant Sciences</topic><topic>Protein kinase</topic><topic>Proteins</topic><topic>Reengineering</topic><topic>Sensors</topic><topic>Stability</topic><topic>Stimuli</topic><topic>Tissue engineering</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Siya</creatorcontrib><creatorcontrib>Luo, Siwei</creatorcontrib><creatorcontrib>Wu, Li</creatorcontrib><creatorcontrib>Liang, Zhi</creatorcontrib><creatorcontrib>Wu, Jia-Rui</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Siya</au><au>Luo, Siwei</au><au>Wu, Li</au><au>Liang, Zhi</au><au>Wu, Jia-Rui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Re-engineering the two-component systems as light-regulated in Escherichia coli</atitle><jtitle>Journal of biosciences</jtitle><stitle>J Biosci</stitle><addtitle>J Biosci</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>42</volume><issue>4</issue><spage>565</spage><epage>573</epage><pages>565-573</pages><issn>0250-5991</issn><eissn>0973-7138</eissn><abstract>Bacteria live in environments with dynamic changes. To sense and respond to different external stimuli, bacteria make use of various sensor-response circuits, called two-component systems (TCSs). A TCS comprises a histidine protein kinase (HK) sensing environmental stimuli and a response regulator protein (RR) regulating downstream genes. The two components are coupled via a phosphorylation control mechanism. In a recent study, we adopted an optogenetics approach to re-engineer the sensor HKs in
Escherichia coli
as a light-sensing fusion protein. We constructed a light-controllable HK by replacing the original signal-specific sensing domain of HK with the light-sensing domain of Cph1 from
Cyanobacteria Synechocystis
, so that HK can be investigated by red light. Here, we extended the study to other 16 HK-RR TCSs and constructed a library of light-responsible HK-Cph1 chimeras. By taking the NarX-NarL system as an example, we demonstrated the light responsiveness of the constructed chimera and investigated the frequency response of the NarX-NarL system. The constructed library serves as a toolkit for future TCS study using optogenetics approach.</abstract><cop>New Delhi</cop><pub>Springer India</pub><pmid>29229875</pmid><doi>10.1007/s12038-017-9711-8</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0250-5991 |
ispartof | Journal of biosciences, 2017-12, Vol.42 (4), p.565-573 |
issn | 0250-5991 0973-7138 |
language | eng |
recordid | cdi_proquest_miscellaneous_1975998133 |
source | Springer Nature |
subjects | Bacteria Biomedical and Life Sciences Biomedicine Cell Biology Chimeras Cyanobacteria Detection E coli Environmental effects Escherichia coli External stimuli Frequency dependence Frequency response Fusion protein Genes Genetics Histidine Information processing Kinases Libraries Life Sciences Light Microbiology Optics Phosphorylation Plant Sciences Protein kinase Proteins Reengineering Sensors Stability Stimuli Tissue engineering Zoology |
title | Re-engineering the two-component systems as light-regulated in Escherichia coli |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Re-engineering%20the%20two-component%20systems%20as%20light-regulated%20in%20Escherichia%20coli&rft.jtitle=Journal%20of%20biosciences&rft.au=Ma,%20Siya&rft.date=2017-12-01&rft.volume=42&rft.issue=4&rft.spage=565&rft.epage=573&rft.pages=565-573&rft.issn=0250-5991&rft.eissn=0973-7138&rft_id=info:doi/10.1007/s12038-017-9711-8&rft_dat=%3Cproquest_cross%3E1967781377%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-573b8199d192855c27ea2f938a7fb5cb57e058b0939576e0feeec497f03c11f33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1967781377&rft_id=info:pmid/29229875&rfr_iscdi=true |