Loading…

Recent advances on the global regularity for irrotational water waves

We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089
Main Authors: Ionescu, A. D., Pusateri, F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273
cites cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273
container_end_page 20170089
container_issue 2111
container_start_page 20170089
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 376
creator Ionescu, A. D.
Pusateri, F.
description We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory. This article is part of the theme issue ‘Nonlinear water waves’.
doi_str_mv 10.1098/rsta.2017.0089
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1976008672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006916444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</originalsourceid><addsrcrecordid>eNp1kctLAzEQxoMotlavHmXBi5etSTbJbi6CFF8gCKLgLUx3p3Vlu6lJttL_3iz1DV4ygfnNN4-PkENGx4zq4tT5AGNOWT6mtNBbZMhEzlKuFd-O_0yJVNLsaUD2vH-hlDEl-S4ZcM25zgs9JBf3WGIbEqhW0JboE9sm4RmTeWOn0CQO510Drg7rZGZdUjtnA4TatjH3BgFdfFfo98nODBqPBx9xRB4vLx4m1-nt3dXN5Pw2LYXiIWUStGa5QClZBqxAqQpZcciULiVQDlUhkAlVVUpxXXCRKUnFdAqzUkvK82xEzja6y266wKqf3EFjlq5egFsbC7X5nWnrZzO3KyNzQbmmUeDkQ8DZ1w59MIval9g00KLtvGE6V_GQKucRPf6DvtjOxcW94ZQqzZQQIlLjDVU6673D2dcwjJreIdM7ZHqHTO9QLDj6ucIX_mlJBLIN4Ow6NrNljWH93fsf2XeB8Z32</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006916444</pqid></control><display><type>article</type><title>Recent advances on the global regularity for irrotational water waves</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Ionescu, A. D. ; Pusateri, F.</creator><creatorcontrib>Ionescu, A. D. ; Pusateri, F.</creatorcontrib><description>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory. This article is part of the theme issue ‘Nonlinear water waves’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0089</identifier><identifier>PMID: 29229789</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cauchy problems ; Euler-Lagrange equation ; Free boundaries ; Global Regularity ; Gravitational waves ; Gravity waves ; Local Existence ; Modified Scattering ; Regularity ; Resonances ; Review ; Singularities ; Three dimensional models ; Water Waves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jan 28, 2018</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</citedby><cites>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</cites><orcidid>0000-0003-3268-8172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><title>Recent advances on the global regularity for irrotational water waves</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory. This article is part of the theme issue ‘Nonlinear water waves’.</description><subject>Cauchy problems</subject><subject>Euler-Lagrange equation</subject><subject>Free boundaries</subject><subject>Global Regularity</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Local Existence</subject><subject>Modified Scattering</subject><subject>Regularity</subject><subject>Resonances</subject><subject>Review</subject><subject>Singularities</subject><subject>Three dimensional models</subject><subject>Water Waves</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctLAzEQxoMotlavHmXBi5etSTbJbi6CFF8gCKLgLUx3p3Vlu6lJttL_3iz1DV4ygfnNN4-PkENGx4zq4tT5AGNOWT6mtNBbZMhEzlKuFd-O_0yJVNLsaUD2vH-hlDEl-S4ZcM25zgs9JBf3WGIbEqhW0JboE9sm4RmTeWOn0CQO510Drg7rZGZdUjtnA4TatjH3BgFdfFfo98nODBqPBx9xRB4vLx4m1-nt3dXN5Pw2LYXiIWUStGa5QClZBqxAqQpZcciULiVQDlUhkAlVVUpxXXCRKUnFdAqzUkvK82xEzja6y266wKqf3EFjlq5egFsbC7X5nWnrZzO3KyNzQbmmUeDkQ8DZ1w59MIval9g00KLtvGE6V_GQKucRPf6DvtjOxcW94ZQqzZQQIlLjDVU6673D2dcwjJreIdM7ZHqHTO9QLDj6ucIX_mlJBLIN4Ow6NrNljWH93fsf2XeB8Z32</recordid><startdate>20180128</startdate><enddate>20180128</enddate><creator>Ionescu, A. D.</creator><creator>Pusateri, F.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3268-8172</orcidid></search><sort><creationdate>20180128</creationdate><title>Recent advances on the global regularity for irrotational water waves</title><author>Ionescu, A. D. ; Pusateri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cauchy problems</topic><topic>Euler-Lagrange equation</topic><topic>Free boundaries</topic><topic>Global Regularity</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Local Existence</topic><topic>Modified Scattering</topic><topic>Regularity</topic><topic>Resonances</topic><topic>Review</topic><topic>Singularities</topic><topic>Three dimensional models</topic><topic>Water Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionescu, A. D.</au><au>Pusateri, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances on the global regularity for irrotational water waves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-01-28</date><risdate>2018</risdate><volume>376</volume><issue>2111</issue><spage>20170089</spage><epage>20170089</epage><pages>20170089-20170089</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory. This article is part of the theme issue ‘Nonlinear water waves’.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29229789</pmid><doi>10.1098/rsta.2017.0089</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3268-8172</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089
issn 1364-503X
1471-2962
language eng
recordid cdi_proquest_miscellaneous_1976008672
source JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Cauchy problems
Euler-Lagrange equation
Free boundaries
Global Regularity
Gravitational waves
Gravity waves
Local Existence
Modified Scattering
Regularity
Resonances
Review
Singularities
Three dimensional models
Water Waves
title Recent advances on the global regularity for irrotational water waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20on%20the%20global%20regularity%20for%20irrotational%20water%20waves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ionescu,%20A.%20D.&rft.date=2018-01-28&rft.volume=376&rft.issue=2111&rft.spage=20170089&rft.epage=20170089&rft.pages=20170089-20170089&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0089&rft_dat=%3Cproquest_pubme%3E2006916444%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006916444&rft_id=info:pmid/29229789&rfr_iscdi=true