Loading…
Recent advances on the global regularity for irrotational water waves
We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273 |
---|---|
cites | cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273 |
container_end_page | 20170089 |
container_issue | 2111 |
container_start_page | 20170089 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 376 |
creator | Ionescu, A. D. Pusateri, F. |
description | We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory.
This article is part of the theme issue ‘Nonlinear water waves’. |
doi_str_mv | 10.1098/rsta.2017.0089 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1976008672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2006916444</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</originalsourceid><addsrcrecordid>eNp1kctLAzEQxoMotlavHmXBi5etSTbJbi6CFF8gCKLgLUx3p3Vlu6lJttL_3iz1DV4ygfnNN4-PkENGx4zq4tT5AGNOWT6mtNBbZMhEzlKuFd-O_0yJVNLsaUD2vH-hlDEl-S4ZcM25zgs9JBf3WGIbEqhW0JboE9sm4RmTeWOn0CQO510Drg7rZGZdUjtnA4TatjH3BgFdfFfo98nODBqPBx9xRB4vLx4m1-nt3dXN5Pw2LYXiIWUStGa5QClZBqxAqQpZcciULiVQDlUhkAlVVUpxXXCRKUnFdAqzUkvK82xEzja6y266wKqf3EFjlq5egFsbC7X5nWnrZzO3KyNzQbmmUeDkQ8DZ1w59MIval9g00KLtvGE6V_GQKucRPf6DvtjOxcW94ZQqzZQQIlLjDVU6673D2dcwjJreIdM7ZHqHTO9QLDj6ucIX_mlJBLIN4Ow6NrNljWH93fsf2XeB8Z32</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2006916444</pqid></control><display><type>article</type><title>Recent advances on the global regularity for irrotational water waves</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Ionescu, A. D. ; Pusateri, F.</creator><creatorcontrib>Ionescu, A. D. ; Pusateri, F.</creatorcontrib><description>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory.
This article is part of the theme issue ‘Nonlinear water waves’.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2017.0089</identifier><identifier>PMID: 29229789</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Cauchy problems ; Euler-Lagrange equation ; Free boundaries ; Global Regularity ; Gravitational waves ; Gravity waves ; Local Existence ; Modified Scattering ; Regularity ; Resonances ; Review ; Singularities ; Three dimensional models ; Water Waves</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089</ispartof><rights>2017 The Author(s)</rights><rights>2017 The Author(s).</rights><rights>Copyright The Royal Society Publishing Jan 28, 2018</rights><rights>2017 The Author(s) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</citedby><cites>FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</cites><orcidid>0000-0003-3268-8172</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29229789$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><title>Recent advances on the global regularity for irrotational water waves</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Phil. Trans. R. Soc. A</addtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory.
This article is part of the theme issue ‘Nonlinear water waves’.</description><subject>Cauchy problems</subject><subject>Euler-Lagrange equation</subject><subject>Free boundaries</subject><subject>Global Regularity</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>Local Existence</subject><subject>Modified Scattering</subject><subject>Regularity</subject><subject>Resonances</subject><subject>Review</subject><subject>Singularities</subject><subject>Three dimensional models</subject><subject>Water Waves</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kctLAzEQxoMotlavHmXBi5etSTbJbi6CFF8gCKLgLUx3p3Vlu6lJttL_3iz1DV4ygfnNN4-PkENGx4zq4tT5AGNOWT6mtNBbZMhEzlKuFd-O_0yJVNLsaUD2vH-hlDEl-S4ZcM25zgs9JBf3WGIbEqhW0JboE9sm4RmTeWOn0CQO510Drg7rZGZdUjtnA4TatjH3BgFdfFfo98nODBqPBx9xRB4vLx4m1-nt3dXN5Pw2LYXiIWUStGa5QClZBqxAqQpZcciULiVQDlUhkAlVVUpxXXCRKUnFdAqzUkvK82xEzja6y266wKqf3EFjlq5egFsbC7X5nWnrZzO3KyNzQbmmUeDkQ8DZ1w59MIval9g00KLtvGE6V_GQKucRPf6DvtjOxcW94ZQqzZQQIlLjDVU6673D2dcwjJreIdM7ZHqHTO9QLDj6ucIX_mlJBLIN4Ow6NrNljWH93fsf2XeB8Z32</recordid><startdate>20180128</startdate><enddate>20180128</enddate><creator>Ionescu, A. D.</creator><creator>Pusateri, F.</creator><general>The Royal Society Publishing</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3268-8172</orcidid></search><sort><creationdate>20180128</creationdate><title>Recent advances on the global regularity for irrotational water waves</title><author>Ionescu, A. D. ; Pusateri, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cauchy problems</topic><topic>Euler-Lagrange equation</topic><topic>Free boundaries</topic><topic>Global Regularity</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>Local Existence</topic><topic>Modified Scattering</topic><topic>Regularity</topic><topic>Resonances</topic><topic>Review</topic><topic>Singularities</topic><topic>Three dimensional models</topic><topic>Water Waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ionescu, A. D.</creatorcontrib><creatorcontrib>Pusateri, F.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ionescu, A. D.</au><au>Pusateri, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recent advances on the global regularity for irrotational water waves</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><stitle>Phil. Trans. R. Soc. A</stitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2018-01-28</date><risdate>2018</risdate><volume>376</volume><issue>2111</issue><spage>20170089</spage><epage>20170089</epage><pages>20170089-20170089</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>We review recent progress on the long-time regularity of solutions of the Cauchy problem for the water waves equations, in two and three dimensions. We begin by introducing the free boundary Euler equations and discussing the local existence of solutions using the paradifferential approach. We then describe in a unified framework, using the Eulerian formulation, global existence results for three- and two-dimensional gravity waves, and our joint result (with Deng and Pausader) on global regularity for the gravity-capillary model in three dimensions. We conclude this review with a short discussion about the formation of singularities and give a few additional references to other interesting topics in the theory.
This article is part of the theme issue ‘Nonlinear water waves’.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>29229789</pmid><doi>10.1098/rsta.2017.0089</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-3268-8172</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2018-01, Vol.376 (2111), p.20170089-20170089 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_proquest_miscellaneous_1976008672 |
source | JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Cauchy problems Euler-Lagrange equation Free boundaries Global Regularity Gravitational waves Gravity waves Local Existence Modified Scattering Regularity Resonances Review Singularities Three dimensional models Water Waves |
title | Recent advances on the global regularity for irrotational water waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recent%20advances%20on%20the%20global%20regularity%20for%20irrotational%20water%20waves&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Ionescu,%20A.%20D.&rft.date=2018-01-28&rft.volume=376&rft.issue=2111&rft.spage=20170089&rft.epage=20170089&rft.pages=20170089-20170089&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2017.0089&rft_dat=%3Cproquest_pubme%3E2006916444%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-15a99174e5513a18e5685d2a369c5a02ad84e146dd662982436504bbafc950273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2006916444&rft_id=info:pmid/29229789&rfr_iscdi=true |