Loading…

All-trans retinoic acid induces mitochondria-mediated apoptosis of human adipose-derived stem cells and affects the balance of the adipogenic differentiation

The all-trans-retinoic acid (ATRA) is the most active form of vitamin A that helps to regulate the proliferation, differentiation and apoptosis of several types of cells, mainly the adipocytes, and causes weight loss through the reduction of adipogenesis and lipogenesis. In this present study we dem...

Full description

Saved in:
Bibliographic Details
Published in:Biomedicine & pharmacotherapy 2017-12, Vol.96, p.1267-1274
Main Authors: Schweich, Laynna de Carvalho, Oliveira, Edwin José Torres de, Pesarini, João Renato, Hermeto, Larissa Corrêa, Camassola, Melissa, Nardi, Nance Beyer, Brochado, Themis Maria Milan, Antoniolli-Silva, Andréia Conceição Milan Brochado, Oliveira, Rodrigo Juliano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The all-trans-retinoic acid (ATRA) is the most active form of vitamin A that helps to regulate the proliferation, differentiation and apoptosis of several types of cells, mainly the adipocytes, and causes weight loss through the reduction of adipogenesis and lipogenesis. In this present study we demonstrated that ATRA concentrations of 20.75, 50 and 100 μM decreased the cell viability in vitro of human adipose-derived stem cells (ADSCs), and in ADSCs during adipogenic differentiation. The cells cycle assessment showed that ATRA increased the cell frequency in Sub-G1 at 4.02x and decreased it in G1 in 2.54x. Moreover, the membrane integrity loss increased by 4.66x and apoptosis increased by 33.56x in ATRA-treated cultures. The gene expression assay suggested that the treatment using ATRA leads to mitochondrial membrane permeabilization and to consequent release of proapoptotic BAK and BAX molecules (increased expression 5.5 and 5.4x respectively); in addition, it increased CASP3 expression (by 8.8x). These events may activate the Bcl-2 (4.1x increase), GADD45 (increase 3.14x) and PPAR-γ (16x increase) expressions, as well as, to reduce the p53 (by −1.38x) expression; therefore, these events should be further mediated by increased RARα expression (by 3.8x). The results evidenced that ATRA may be a good proposal for mesotherapy strategies in order to control the development of subcutaneous adipose tissue; as this tissue have a higher development in some specific areas and ATRA interferes not only in the ADSCs differentiation but also in the apoptosis of ADSCs, preadipocytes and adipocytes.
ISSN:0753-3322
1950-6007
DOI:10.1016/j.biopha.2017.11.087