Loading…
The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction
BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) wa...
Saved in:
Published in: | Journal of the science of food and agriculture 2018-07, Vol.98 (9), p.3290-3298 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93 |
container_end_page | 3298 |
container_issue | 9 |
container_start_page | 3290 |
container_title | Journal of the science of food and agriculture |
container_volume | 98 |
creator | Kaewjumpol, Geerada Oruna‐Concha, Maria J Niranjan, Keshavan Thawornchinsombut, Supawan |
description | BACKGROUND
This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content.
RESULTS
Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds.
CONCLUSION
The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry |
doi_str_mv | 10.1002/jsfa.8832 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977121135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050517158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</originalsourceid><addsrcrecordid>eNp1kUFP2zAYhi00RDu2A39gsrQLO6T4s-M6PlYItiEkDpSz5cSfW1dpwuxEW_79XAo7TOL0Sf4ePfbrl5ALYAtgjF_tkreLqhL8hMyBaVUwBuwDmecdLySUfEY-prRjjGm9XJ6RGddc6FLJOUnrLdLn2LuxGULf0d7T7eRi307JDpioj_2ehs6NaYjBtu1EHXo7DOhoDA3SOtqO2s7RMCSaxuhtPgx7u0HabG23yQo3xtBtKP4Zon255BM59bZN-Pl1npOn25v19Y_i_uH7z-vVfdGIquKFFaIuLYhKabWsawZQAZdV6RGQAzArgCvtSuUAsdHMo22UULLWNecStTgnl0dvzvdrxDSYfUgNtq3tsB-TAa0UZJOQGf36H7rrx9jl1xnOJJOgQFaZ-nakmtinFNGb55izxskAM4cmzKEJc2gis19ejWO9R_ePfPv6DFwdgd-hxel9k7l7vF29KP8CIvGTgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050517158</pqid></control><display><type>article</type><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</creator><creatorcontrib>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</creatorcontrib><description>BACKGROUND
This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content.
RESULTS
Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds.
CONCLUSION
The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8832</identifier><identifier>PMID: 29239475</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agricultural production ; Alkaline water ; Antioxidants ; Antioxidants - analysis ; Fats - analysis ; Food Handling - methods ; Gallic acid ; Hydrolysates ; Hydrolysis ; Iron sulfates ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; mild subcritical alkaline water extraction ; Optimization ; Organic chemistry ; Oryza ; Peptide Hydrolases - metabolism ; phenolic compound ; Phenolic compounds ; Phenols ; Phenols - analysis ; Plant Extracts - chemistry ; Plant Proteins - analysis ; Protease ; Proteinase ; Proteins ; Proteolysis ; Recovery ; Response surface methodology ; Rice bran ; rice bran hydrolysate ; scanning electron microscopy ; Seeds - chemistry ; Seeds - metabolism ; Seeds - ultrastructure ; Substrates ; Vitamin E</subject><ispartof>Journal of the science of food and agriculture, 2018-07, Vol.98 (9), p.3290-3298</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><rights>2018 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</citedby><cites>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</cites><orcidid>0000-0002-8452-5861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29239475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaewjumpol, Geerada</creatorcontrib><creatorcontrib>Oruna‐Concha, Maria J</creatorcontrib><creatorcontrib>Niranjan, Keshavan</creatorcontrib><creatorcontrib>Thawornchinsombut, Supawan</creatorcontrib><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND
This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content.
RESULTS
Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds.
CONCLUSION
The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</description><subject>Agricultural production</subject><subject>Alkaline water</subject><subject>Antioxidants</subject><subject>Antioxidants - analysis</subject><subject>Fats - analysis</subject><subject>Food Handling - methods</subject><subject>Gallic acid</subject><subject>Hydrolysates</subject><subject>Hydrolysis</subject><subject>Iron sulfates</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>mild subcritical alkaline water extraction</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Oryza</subject><subject>Peptide Hydrolases - metabolism</subject><subject>phenolic compound</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phenols - analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Proteins - analysis</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Recovery</subject><subject>Response surface methodology</subject><subject>Rice bran</subject><subject>rice bran hydrolysate</subject><subject>scanning electron microscopy</subject><subject>Seeds - chemistry</subject><subject>Seeds - metabolism</subject><subject>Seeds - ultrastructure</subject><subject>Substrates</subject><subject>Vitamin E</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP2zAYhi00RDu2A39gsrQLO6T4s-M6PlYItiEkDpSz5cSfW1dpwuxEW_79XAo7TOL0Sf4ePfbrl5ALYAtgjF_tkreLqhL8hMyBaVUwBuwDmecdLySUfEY-prRjjGm9XJ6RGddc6FLJOUnrLdLn2LuxGULf0d7T7eRi307JDpioj_2ehs6NaYjBtu1EHXo7DOhoDA3SOtqO2s7RMCSaxuhtPgx7u0HabG23yQo3xtBtKP4Zon255BM59bZN-Pl1npOn25v19Y_i_uH7z-vVfdGIquKFFaIuLYhKabWsawZQAZdV6RGQAzArgCvtSuUAsdHMo22UULLWNecStTgnl0dvzvdrxDSYfUgNtq3tsB-TAa0UZJOQGf36H7rrx9jl1xnOJJOgQFaZ-nakmtinFNGb55izxskAM4cmzKEJc2gis19ejWO9R_ePfPv6DFwdgd-hxel9k7l7vF29KP8CIvGTgQ</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Kaewjumpol, Geerada</creator><creator>Oruna‐Concha, Maria J</creator><creator>Niranjan, Keshavan</creator><creator>Thawornchinsombut, Supawan</creator><general>John Wiley & Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8452-5861</orcidid></search><sort><creationdate>201807</creationdate><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><author>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Alkaline water</topic><topic>Antioxidants</topic><topic>Antioxidants - analysis</topic><topic>Fats - analysis</topic><topic>Food Handling - methods</topic><topic>Gallic acid</topic><topic>Hydrolysates</topic><topic>Hydrolysis</topic><topic>Iron sulfates</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>mild subcritical alkaline water extraction</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Oryza</topic><topic>Peptide Hydrolases - metabolism</topic><topic>phenolic compound</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phenols - analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Proteins - analysis</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Recovery</topic><topic>Response surface methodology</topic><topic>Rice bran</topic><topic>rice bran hydrolysate</topic><topic>scanning electron microscopy</topic><topic>Seeds - chemistry</topic><topic>Seeds - metabolism</topic><topic>Seeds - ultrastructure</topic><topic>Substrates</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewjumpol, Geerada</creatorcontrib><creatorcontrib>Oruna‐Concha, Maria J</creatorcontrib><creatorcontrib>Niranjan, Keshavan</creatorcontrib><creatorcontrib>Thawornchinsombut, Supawan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewjumpol, Geerada</au><au>Oruna‐Concha, Maria J</au><au>Niranjan, Keshavan</au><au>Thawornchinsombut, Supawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2018-07</date><risdate>2018</risdate><volume>98</volume><issue>9</issue><spage>3290</spage><epage>3298</epage><pages>3290-3298</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND
This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content.
RESULTS
Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds.
CONCLUSION
The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>29239475</pmid><doi>10.1002/jsfa.8832</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8452-5861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-5142 |
ispartof | Journal of the science of food and agriculture, 2018-07, Vol.98 (9), p.3290-3298 |
issn | 0022-5142 1097-0010 |
language | eng |
recordid | cdi_proquest_miscellaneous_1977121135 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Agricultural production Alkaline water Antioxidants Antioxidants - analysis Fats - analysis Food Handling - methods Gallic acid Hydrolysates Hydrolysis Iron sulfates Microscopy, Atomic Force Microscopy, Electron, Scanning mild subcritical alkaline water extraction Optimization Organic chemistry Oryza Peptide Hydrolases - metabolism phenolic compound Phenolic compounds Phenols Phenols - analysis Plant Extracts - chemistry Plant Proteins - analysis Protease Proteinase Proteins Proteolysis Recovery Response surface methodology Rice bran rice bran hydrolysate scanning electron microscopy Seeds - chemistry Seeds - metabolism Seeds - ultrastructure Substrates Vitamin E |
title | The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20of%20hydrolysates%20from%20industrially%20defatted%20rice%20bran%20and%20its%20surface%20image%20changes%20during%20extraction&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Kaewjumpol,%20Geerada&rft.date=2018-07&rft.volume=98&rft.issue=9&rft.spage=3290&rft.epage=3298&rft.pages=3290-3298&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8832&rft_dat=%3Cproquest_cross%3E2050517158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2050517158&rft_id=info:pmid/29239475&rfr_iscdi=true |