Loading…

The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction

BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) wa...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the science of food and agriculture 2018-07, Vol.98 (9), p.3290-3298
Main Authors: Kaewjumpol, Geerada, Oruna‐Concha, Maria J, Niranjan, Keshavan, Thawornchinsombut, Supawan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93
cites cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93
container_end_page 3298
container_issue 9
container_start_page 3290
container_title Journal of the science of food and agriculture
container_volume 98
creator Kaewjumpol, Geerada
Oruna‐Concha, Maria J
Niranjan, Keshavan
Thawornchinsombut, Supawan
description BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content. RESULTS Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds. CONCLUSION The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jsfa.8832
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977121135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2050517158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</originalsourceid><addsrcrecordid>eNp1kUFP2zAYhi00RDu2A39gsrQLO6T4s-M6PlYItiEkDpSz5cSfW1dpwuxEW_79XAo7TOL0Sf4ePfbrl5ALYAtgjF_tkreLqhL8hMyBaVUwBuwDmecdLySUfEY-prRjjGm9XJ6RGddc6FLJOUnrLdLn2LuxGULf0d7T7eRi307JDpioj_2ehs6NaYjBtu1EHXo7DOhoDA3SOtqO2s7RMCSaxuhtPgx7u0HabG23yQo3xtBtKP4Zon255BM59bZN-Pl1npOn25v19Y_i_uH7z-vVfdGIquKFFaIuLYhKabWsawZQAZdV6RGQAzArgCvtSuUAsdHMo22UULLWNecStTgnl0dvzvdrxDSYfUgNtq3tsB-TAa0UZJOQGf36H7rrx9jl1xnOJJOgQFaZ-nakmtinFNGb55izxskAM4cmzKEJc2gis19ejWO9R_ePfPv6DFwdgd-hxel9k7l7vF29KP8CIvGTgQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050517158</pqid></control><display><type>article</type><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</creator><creatorcontrib>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</creatorcontrib><description>BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content. RESULTS Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds. CONCLUSION The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0022-5142</identifier><identifier>EISSN: 1097-0010</identifier><identifier>DOI: 10.1002/jsfa.8832</identifier><identifier>PMID: 29239475</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Agricultural production ; Alkaline water ; Antioxidants ; Antioxidants - analysis ; Fats - analysis ; Food Handling - methods ; Gallic acid ; Hydrolysates ; Hydrolysis ; Iron sulfates ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; mild subcritical alkaline water extraction ; Optimization ; Organic chemistry ; Oryza ; Peptide Hydrolases - metabolism ; phenolic compound ; Phenolic compounds ; Phenols ; Phenols - analysis ; Plant Extracts - chemistry ; Plant Proteins - analysis ; Protease ; Proteinase ; Proteins ; Proteolysis ; Recovery ; Response surface methodology ; Rice bran ; rice bran hydrolysate ; scanning electron microscopy ; Seeds - chemistry ; Seeds - metabolism ; Seeds - ultrastructure ; Substrates ; Vitamin E</subject><ispartof>Journal of the science of food and agriculture, 2018-07, Vol.98 (9), p.3290-3298</ispartof><rights>2017 Society of Chemical Industry</rights><rights>2017 Society of Chemical Industry.</rights><rights>2018 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</citedby><cites>FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</cites><orcidid>0000-0002-8452-5861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29239475$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaewjumpol, Geerada</creatorcontrib><creatorcontrib>Oruna‐Concha, Maria J</creatorcontrib><creatorcontrib>Niranjan, Keshavan</creatorcontrib><creatorcontrib>Thawornchinsombut, Supawan</creatorcontrib><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><title>Journal of the science of food and agriculture</title><addtitle>J Sci Food Agric</addtitle><description>BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content. RESULTS Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds. CONCLUSION The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</description><subject>Agricultural production</subject><subject>Alkaline water</subject><subject>Antioxidants</subject><subject>Antioxidants - analysis</subject><subject>Fats - analysis</subject><subject>Food Handling - methods</subject><subject>Gallic acid</subject><subject>Hydrolysates</subject><subject>Hydrolysis</subject><subject>Iron sulfates</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>mild subcritical alkaline water extraction</subject><subject>Optimization</subject><subject>Organic chemistry</subject><subject>Oryza</subject><subject>Peptide Hydrolases - metabolism</subject><subject>phenolic compound</subject><subject>Phenolic compounds</subject><subject>Phenols</subject><subject>Phenols - analysis</subject><subject>Plant Extracts - chemistry</subject><subject>Plant Proteins - analysis</subject><subject>Protease</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Recovery</subject><subject>Response surface methodology</subject><subject>Rice bran</subject><subject>rice bran hydrolysate</subject><subject>scanning electron microscopy</subject><subject>Seeds - chemistry</subject><subject>Seeds - metabolism</subject><subject>Seeds - ultrastructure</subject><subject>Substrates</subject><subject>Vitamin E</subject><issn>0022-5142</issn><issn>1097-0010</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP2zAYhi00RDu2A39gsrQLO6T4s-M6PlYItiEkDpSz5cSfW1dpwuxEW_79XAo7TOL0Sf4ePfbrl5ALYAtgjF_tkreLqhL8hMyBaVUwBuwDmecdLySUfEY-prRjjGm9XJ6RGddc6FLJOUnrLdLn2LuxGULf0d7T7eRi307JDpioj_2ehs6NaYjBtu1EHXo7DOhoDA3SOtqO2s7RMCSaxuhtPgx7u0HabG23yQo3xtBtKP4Zon255BM59bZN-Pl1npOn25v19Y_i_uH7z-vVfdGIquKFFaIuLYhKabWsawZQAZdV6RGQAzArgCvtSuUAsdHMo22UULLWNecStTgnl0dvzvdrxDSYfUgNtq3tsB-TAa0UZJOQGf36H7rrx9jl1xnOJJOgQFaZ-nakmtinFNGb55izxskAM4cmzKEJc2gis19ejWO9R_ePfPv6DFwdgd-hxel9k7l7vF29KP8CIvGTgQ</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Kaewjumpol, Geerada</creator><creator>Oruna‐Concha, Maria J</creator><creator>Niranjan, Keshavan</creator><creator>Thawornchinsombut, Supawan</creator><general>John Wiley &amp; Sons, Ltd</general><general>John Wiley and Sons, Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-8452-5861</orcidid></search><sort><creationdate>201807</creationdate><title>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</title><author>Kaewjumpol, Geerada ; Oruna‐Concha, Maria J ; Niranjan, Keshavan ; Thawornchinsombut, Supawan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural production</topic><topic>Alkaline water</topic><topic>Antioxidants</topic><topic>Antioxidants - analysis</topic><topic>Fats - analysis</topic><topic>Food Handling - methods</topic><topic>Gallic acid</topic><topic>Hydrolysates</topic><topic>Hydrolysis</topic><topic>Iron sulfates</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>mild subcritical alkaline water extraction</topic><topic>Optimization</topic><topic>Organic chemistry</topic><topic>Oryza</topic><topic>Peptide Hydrolases - metabolism</topic><topic>phenolic compound</topic><topic>Phenolic compounds</topic><topic>Phenols</topic><topic>Phenols - analysis</topic><topic>Plant Extracts - chemistry</topic><topic>Plant Proteins - analysis</topic><topic>Protease</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Recovery</topic><topic>Response surface methodology</topic><topic>Rice bran</topic><topic>rice bran hydrolysate</topic><topic>scanning electron microscopy</topic><topic>Seeds - chemistry</topic><topic>Seeds - metabolism</topic><topic>Seeds - ultrastructure</topic><topic>Substrates</topic><topic>Vitamin E</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaewjumpol, Geerada</creatorcontrib><creatorcontrib>Oruna‐Concha, Maria J</creatorcontrib><creatorcontrib>Niranjan, Keshavan</creatorcontrib><creatorcontrib>Thawornchinsombut, Supawan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the science of food and agriculture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaewjumpol, Geerada</au><au>Oruna‐Concha, Maria J</au><au>Niranjan, Keshavan</au><au>Thawornchinsombut, Supawan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction</atitle><jtitle>Journal of the science of food and agriculture</jtitle><addtitle>J Sci Food Agric</addtitle><date>2018-07</date><risdate>2018</risdate><volume>98</volume><issue>9</issue><spage>3290</spage><epage>3298</epage><pages>3290-3298</pages><issn>0022-5142</issn><eissn>1097-0010</eissn><abstract>BACKGROUND This research employed a mild subcritical alkaline water (mild‐SAW) extraction technique to overcome the difficulty of active compound extractability from industrially defatted rice bran (IDRB). Mild‐SAW (pH 9.5, 130 °C, 120 min) treatment followed by enzymatic hydrolysis (Protease G6) was applied to produce rice bran hydrolysate (RBH). Response surface methodology was used to identify proteolysis conditions for maximizing protein content and ABTS radical scavenging activity (ABTS‐RSA). Microstructural changes occurring in IDRB during extraction were monitored. The selected RBH was characterized for protein recovery, yield, antioxidant activities, phenolic profile and hydroxymethylfufural (HMF) content. RESULTS Optimal proteolysis conditions were 20 mL kg−1 IDRB (enzyme/substrate ratio) for 6 h. Under these conditions, the yield, ABTS‐RSA, ferric reducing antioxidant power and total phenolic content of the RBH were 46.1%, 294.22 µmol trolox g−1, 57.72 µmol FeSO4 g−1 and 22.73 mg gallic acid g−1 respectively, with relatively low HMF level (0.21 mg g−1). The protein recovery was 4.8 times greater than that by conventional alkaline extraction. Its major phenolic compounds were p‐coumaric and ferulic acids. The microstructural changes of IDRB confirmed that the mild‐SAW/Protease G6 process enhanced the release of active compounds. CONCLUSION The process of mild‐SAW extraction followed by proteolysis promotes the release of active compounds from IDRB. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>29239475</pmid><doi>10.1002/jsfa.8832</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-8452-5861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-5142
ispartof Journal of the science of food and agriculture, 2018-07, Vol.98 (9), p.3290-3298
issn 0022-5142
1097-0010
language eng
recordid cdi_proquest_miscellaneous_1977121135
source Wiley-Blackwell Read & Publish Collection
subjects Agricultural production
Alkaline water
Antioxidants
Antioxidants - analysis
Fats - analysis
Food Handling - methods
Gallic acid
Hydrolysates
Hydrolysis
Iron sulfates
Microscopy, Atomic Force
Microscopy, Electron, Scanning
mild subcritical alkaline water extraction
Optimization
Organic chemistry
Oryza
Peptide Hydrolases - metabolism
phenolic compound
Phenolic compounds
Phenols
Phenols - analysis
Plant Extracts - chemistry
Plant Proteins - analysis
Protease
Proteinase
Proteins
Proteolysis
Recovery
Response surface methodology
Rice bran
rice bran hydrolysate
scanning electron microscopy
Seeds - chemistry
Seeds - metabolism
Seeds - ultrastructure
Substrates
Vitamin E
title The production of hydrolysates from industrially defatted rice bran and its surface image changes during extraction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A05%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20production%20of%20hydrolysates%20from%20industrially%20defatted%20rice%20bran%20and%20its%20surface%20image%20changes%20during%20extraction&rft.jtitle=Journal%20of%20the%20science%20of%20food%20and%20agriculture&rft.au=Kaewjumpol,%20Geerada&rft.date=2018-07&rft.volume=98&rft.issue=9&rft.spage=3290&rft.epage=3298&rft.pages=3290-3298&rft.issn=0022-5142&rft.eissn=1097-0010&rft_id=info:doi/10.1002/jsfa.8832&rft_dat=%3Cproquest_cross%3E2050517158%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3882-a33b4a1387976bb011812584fe1e2110a31279d47d1eec90feac7375b9b225e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2050517158&rft_id=info:pmid/29239475&rfr_iscdi=true