Loading…

PGC-1α and PGC-1β have both similar and distinct effects on myofiber switching toward an oxidative phenotype

Peroxisome proliferator-activated receptor-γ coactivator-1α and -1β (PGC-1α and PGC-1β) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism were studied from d...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology: endocrinology and metabolism 2006-10, Vol.291 (4), p.E807-E816
Main Authors: Mortensen, Ole Hartvig, Frandsen, Lis, Schjerling, Peter, Nishimura, Erica, Grunnet, Niels
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Peroxisome proliferator-activated receptor-γ coactivator-1α and -1β (PGC-1α and PGC-1β) were overexpressed by adenovirus-mediated gene transfer in cultures of primary rat skeletal muscle cells derived from neonatal myoblasts. Effects on muscle fiber type transition and metabolism were studied from days 5 to 22 of culture. PGC-1α and PGC-1β overexpression caused a three- to fourfold increase in mRNA level, a doubling of enzymatic activity of citrate synthase, a slight increase in short-chain acyl-CoA dehydrogenase mRNA, a doubling of the mRNA level, and a 30–50% increase in enzymatic activity of glyceraldehyde-3-phosphate dehydrogenase. Lactate dehydrogenase or creatine kinase activity was unchanged. PGC-1α enhanced glycogen buildup twofold at 5 or 25 mM glucose, whereas PGC-1β caused a decrease. Both PGC-1α and PGC-1β overexpression caused a faster maturation of myotubes, as seen by mRNA downregulation of the immature embryonal and perinatal myosin heavy-chain (MHC) isoforms. PGC-1α or PGC-1β overexpression enhanced mRNA of the slow oxidative-associated MHC isoform MHCIb and downregulated mRNA levels of the fast glycolytic-associated MHC isoforms MHCIIX and MHCIIB. Only PGC-1β overexpression caused an increase in mRNA of the intermediary fast oxidative-associated MHC isoform MHCIIA. PGC-1α or PGC-1β overexpression upregulated GLUT4 mRNA and downregulated myocyte enhancer factor 2C transcription factor mRNA; only PGC-1α overexpression caused an increase in the mRNA expression of TRB3, a negative regulator of insulin signaling. These results show that both PGC-1α and PGC-1β are involved in the regulation of skeletal muscle fiber transition and metabolism and that they have both overlapping and differing effects.
ISSN:0193-1849
1522-1555
DOI:10.1152/ajpendo.00591.2005