Loading…

Systems Approach to Refining Genome Annotation

Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation an...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-11, Vol.103 (46), p.17480-17484
Main Authors: Reed, Jennifer L., Patel, Trina R., Chen, Keri H., Joyce, Andrew R., Applebee, Margaret K., Herring, Christopher D., Bui, Olivia T., Knight, Eric M., Fong, Stephen S., Palsson, Bernhard O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3
cites cdi_FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3
container_end_page 17484
container_issue 46
container_start_page 17480
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Reed, Jennifer L.
Patel, Trina R.
Chen, Keri H.
Joyce, Andrew R.
Applebee, Margaret K.
Herring, Christopher D.
Bui, Olivia T.
Knight, Eric M.
Fong, Stephen S.
Palsson, Bernhard O.
description Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were verified experimentally in five cases, leading to the functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT, and putP) with two new enzymatic activities and four transport functions. This study thus demonstrates the use of systems analysis to discover metabolic and transport functions and their genetic basis by a combination of experimental and computational approaches.
doi_str_mv 10.1073/pnas.0603364103
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19773913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052457</jstor_id><sourcerecordid>30052457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3</originalsourceid><addsrcrecordid>eNqF0c1rFDEYBvAgFrtWz56UoQfBw2zffEw-LsJStAqFgh_nkMkk7SwzyTjJSPvfm2WXrnrpKYf88pD3fRB6g2GNQdCLKZi0Bg6UcoaBPkMrDArXnCl4jlYARNSSEXaKXqa0BQDVSHiBTrEAKRumVmj9_SFlN6ZqM01zNPauyrH65nwf-nBbXbkQR1dtQojZ5D6GV-jEmyG514fzDP38_OnH5Zf6-ubq6-XmurYNhVw3LVXYtlh2nW-5JY0TRoEX3gglDLPG8BYM9wYkEMyN4x22lijjO9p6YugZ-rjPnZZ2dJ11Ic9m0NPcj2Z-0NH0-t-b0N_p2_hbY9ko1bAS8P4QMMdfi0tZj32ybhhMcHFJmkvMhCgrfApiJUQZhhZ4_h_cxmUOZQuaAKZlMMILutgjO8eUZucfv4xB7xrTu8b0sbHy4t3fkx79oaICPhzA7uUxjmrGi2IStF-GIbv7XGz1hC3k7Z5sU47zo6EADWGNoH8AlkO0eg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201379726</pqid></control><display><type>article</type><title>Systems Approach to Refining Genome Annotation</title><source>JSTOR Archival Journals</source><source>PubMed Central</source><creator>Reed, Jennifer L. ; Patel, Trina R. ; Chen, Keri H. ; Joyce, Andrew R. ; Applebee, Margaret K. ; Herring, Christopher D. ; Bui, Olivia T. ; Knight, Eric M. ; Fong, Stephen S. ; Palsson, Bernhard O.</creator><creatorcontrib>Reed, Jennifer L. ; Patel, Trina R. ; Chen, Keri H. ; Joyce, Andrew R. ; Applebee, Margaret K. ; Herring, Christopher D. ; Bui, Olivia T. ; Knight, Eric M. ; Fong, Stephen S. ; Palsson, Bernhard O.</creatorcontrib><description>Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were verified experimentally in five cases, leading to the functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT, and putP) with two new enzymatic activities and four transport functions. This study thus demonstrates the use of systems analysis to discover metabolic and transport functions and their genetic basis by a combination of experimental and computational approaches.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0603364103</identifier><identifier>PMID: 17088549</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Algorithms ; Biological Sciences ; Biological Transport ; Carbon ; Carbon - metabolism ; Cell Proliferation ; Complementary DNA ; Computational Biology ; Computer Simulation ; E coli ; Escherichia coli ; Escherichia coli - cytology ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genetic screening ; Genome, Bacterial - genetics ; Genomes ; Genomics ; Malates - metabolism ; Metabolism ; Modeling ; Open Reading Frames - genetics ; Phenotypes ; Propionates ; Reverse transcriptase polymerase chain reaction ; Studies ; Sugar Acids - metabolism ; Thymidine - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (46), p.17480-17484</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 14, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3</citedby><cites>FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/46.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052457$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052457$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17088549$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reed, Jennifer L.</creatorcontrib><creatorcontrib>Patel, Trina R.</creatorcontrib><creatorcontrib>Chen, Keri H.</creatorcontrib><creatorcontrib>Joyce, Andrew R.</creatorcontrib><creatorcontrib>Applebee, Margaret K.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><creatorcontrib>Bui, Olivia T.</creatorcontrib><creatorcontrib>Knight, Eric M.</creatorcontrib><creatorcontrib>Fong, Stephen S.</creatorcontrib><creatorcontrib>Palsson, Bernhard O.</creatorcontrib><title>Systems Approach to Refining Genome Annotation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were verified experimentally in five cases, leading to the functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT, and putP) with two new enzymatic activities and four transport functions. This study thus demonstrates the use of systems analysis to discover metabolic and transport functions and their genetic basis by a combination of experimental and computational approaches.</description><subject>Algorithms</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Carbon</subject><subject>Carbon - metabolism</subject><subject>Cell Proliferation</subject><subject>Complementary DNA</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - cytology</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genetic screening</subject><subject>Genome, Bacterial - genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Malates - metabolism</subject><subject>Metabolism</subject><subject>Modeling</subject><subject>Open Reading Frames - genetics</subject><subject>Phenotypes</subject><subject>Propionates</subject><subject>Reverse transcriptase polymerase chain reaction</subject><subject>Studies</subject><subject>Sugar Acids - metabolism</subject><subject>Thymidine - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqF0c1rFDEYBvAgFrtWz56UoQfBw2zffEw-LsJStAqFgh_nkMkk7SwzyTjJSPvfm2WXrnrpKYf88pD3fRB6g2GNQdCLKZi0Bg6UcoaBPkMrDArXnCl4jlYARNSSEXaKXqa0BQDVSHiBTrEAKRumVmj9_SFlN6ZqM01zNPauyrH65nwf-nBbXbkQR1dtQojZ5D6GV-jEmyG514fzDP38_OnH5Zf6-ubq6-XmurYNhVw3LVXYtlh2nW-5JY0TRoEX3gglDLPG8BYM9wYkEMyN4x22lijjO9p6YugZ-rjPnZZ2dJ11Ic9m0NPcj2Z-0NH0-t-b0N_p2_hbY9ko1bAS8P4QMMdfi0tZj32ybhhMcHFJmkvMhCgrfApiJUQZhhZ4_h_cxmUOZQuaAKZlMMILutgjO8eUZucfv4xB7xrTu8b0sbHy4t3fkx79oaICPhzA7uUxjmrGi2IStF-GIbv7XGz1hC3k7Z5sU47zo6EADWGNoH8AlkO0eg</recordid><startdate>20061114</startdate><enddate>20061114</enddate><creator>Reed, Jennifer L.</creator><creator>Patel, Trina R.</creator><creator>Chen, Keri H.</creator><creator>Joyce, Andrew R.</creator><creator>Applebee, Margaret K.</creator><creator>Herring, Christopher D.</creator><creator>Bui, Olivia T.</creator><creator>Knight, Eric M.</creator><creator>Fong, Stephen S.</creator><creator>Palsson, Bernhard O.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20061114</creationdate><title>Systems Approach to Refining Genome Annotation</title><author>Reed, Jennifer L. ; Patel, Trina R. ; Chen, Keri H. ; Joyce, Andrew R. ; Applebee, Margaret K. ; Herring, Christopher D. ; Bui, Olivia T. ; Knight, Eric M. ; Fong, Stephen S. ; Palsson, Bernhard O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Algorithms</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Carbon</topic><topic>Carbon - metabolism</topic><topic>Cell Proliferation</topic><topic>Complementary DNA</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - cytology</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genetic screening</topic><topic>Genome, Bacterial - genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Malates - metabolism</topic><topic>Metabolism</topic><topic>Modeling</topic><topic>Open Reading Frames - genetics</topic><topic>Phenotypes</topic><topic>Propionates</topic><topic>Reverse transcriptase polymerase chain reaction</topic><topic>Studies</topic><topic>Sugar Acids - metabolism</topic><topic>Thymidine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reed, Jennifer L.</creatorcontrib><creatorcontrib>Patel, Trina R.</creatorcontrib><creatorcontrib>Chen, Keri H.</creatorcontrib><creatorcontrib>Joyce, Andrew R.</creatorcontrib><creatorcontrib>Applebee, Margaret K.</creatorcontrib><creatorcontrib>Herring, Christopher D.</creatorcontrib><creatorcontrib>Bui, Olivia T.</creatorcontrib><creatorcontrib>Knight, Eric M.</creatorcontrib><creatorcontrib>Fong, Stephen S.</creatorcontrib><creatorcontrib>Palsson, Bernhard O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reed, Jennifer L.</au><au>Patel, Trina R.</au><au>Chen, Keri H.</au><au>Joyce, Andrew R.</au><au>Applebee, Margaret K.</au><au>Herring, Christopher D.</au><au>Bui, Olivia T.</au><au>Knight, Eric M.</au><au>Fong, Stephen S.</au><au>Palsson, Bernhard O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Systems Approach to Refining Genome Annotation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-11-14</date><risdate>2006</risdate><volume>103</volume><issue>46</issue><spage>17480</spage><epage>17484</epage><pages>17480-17484</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Genome-scale models of Escherichia coli K-12 MG1655 metabolism have been able to predict growth phenotypes in most, but not all, defined growth environments. Here we introduce the use of an optimization-based algorithm that predicts the missing reactions that are required to reconcile computation and experiment when they disagree. The computer-generated hypotheses for missing reactions were verified experimentally in five cases, leading to the functional assignment of eight ORFs (yjjLMN, yeaTU, dctA, idnT, and putP) with two new enzymatic activities and four transport functions. This study thus demonstrates the use of systems analysis to discover metabolic and transport functions and their genetic basis by a combination of experimental and computational approaches.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17088549</pmid><doi>10.1073/pnas.0603364103</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-11, Vol.103 (46), p.17480-17484
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_19773913
source JSTOR Archival Journals; PubMed Central
subjects Algorithms
Biological Sciences
Biological Transport
Carbon
Carbon - metabolism
Cell Proliferation
Complementary DNA
Computational Biology
Computer Simulation
E coli
Escherichia coli
Escherichia coli - cytology
Escherichia coli - genetics
Escherichia coli - metabolism
Genetic screening
Genome, Bacterial - genetics
Genomes
Genomics
Malates - metabolism
Metabolism
Modeling
Open Reading Frames - genetics
Phenotypes
Propionates
Reverse transcriptase polymerase chain reaction
Studies
Sugar Acids - metabolism
Thymidine - metabolism
title Systems Approach to Refining Genome Annotation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A50%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Systems%20Approach%20to%20Refining%20Genome%20Annotation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Reed,%20Jennifer%20L.&rft.date=2006-11-14&rft.volume=103&rft.issue=46&rft.spage=17480&rft.epage=17484&rft.pages=17480-17484&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0603364103&rft_dat=%3Cjstor_proqu%3E30052457%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c530t-5b391cb18ddfb6c25e7a90f7fa797a4caa6b0a6fa080216ae6d1cc29afd3bf2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201379726&rft_id=info:pmid/17088549&rft_jstor_id=30052457&rfr_iscdi=true