Loading…
Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy
Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of t...
Saved in:
Published in: | Analytical chemistry (Washington) 2018-01, Vol.90 (2), p.1177-1185 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3 |
---|---|
cites | cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3 |
container_end_page | 1185 |
container_issue | 2 |
container_start_page | 1177 |
container_title | Analytical chemistry (Washington) |
container_volume | 90 |
creator | Ye, Zhongju Wei, Lin Zeng, Xuyao Weng, Rui Shi, Xingbo Wang, Naidong Chen, Langxing Xiao, Lehui |
description | Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells. |
doi_str_mv | 10.1021/acs.analchem.7b03762 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977779782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977779782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0DIEhcuWWzHib3HErpQadtyAK7RxJ5s3SZxaiet-iv4y3i12x441Bdfvvdm3jxCPnC25EzwL2DiEgbozDX2S9WwXJXiFVnwQrCs1Fq8JgvGWJ4JxdgROY7xhjHOGS_fkiOxEjKXSi_I369gbrfBz4PN1gGRnvewdcOW-pYC_eMCdLSCMTpLfwY_oRsirTxMaOnp4KKfgh-doZcw-BHC5EyH1A9JunH3O5sKu45eYN8EGJA-uOmafoNwm60ddpZejUmRJlw4E3w0fnx8R9600EV8f_hPyO_12a_qR7a5-n5enW4ykDyfsoKjKoTNLbYlFkalMLbRDLRRssAyl7mVhW1lwyUaAykv13lTosES2rZo8hPyee87Bn83Y5zq3kWTlk1r-jnWfKXSWyktEvrpP_TGzyFdPtaCMa21ZGqVKLmndkliwLYeg-shPNac1bvC6lRY_VRYfSgsyT4ezOemR_ssemooAWwP7OTPg1_0_Ad6KKZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884079</pqid></control><display><type>article</type><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</creator><creatorcontrib>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</creatorcontrib><description>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b03762</identifier><identifier>PMID: 29243478</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anchoring ; Anisotropy ; Biocompatibility ; Capsid Proteins - analysis ; Cells ; Cells (biology) ; Chemistry ; Circoviridae Infections - pathology ; Circoviridae Infections - virology ; Circovirus - chemistry ; Diffusion ; Digital imaging ; Equipment Design ; Gaussian process ; Gold ; Gold - chemistry ; Hep G2 Cells ; Hepatocytes - pathology ; Hepatocytes - virology ; Humans ; Image analysis ; Image contrast ; Image processing ; Inspection ; Metal Nanoparticles - chemistry ; Microscopy ; Microscopy - instrumentation ; Microscopy - methods ; Nanoparticles ; Nanorods ; Normal distribution ; Optical Imaging - instrumentation ; Optical Imaging - methods ; Optical microscopy ; Organelles ; Polarization ; Proteins ; Scattering ; Surface chemistry</subject><ispartof>Analytical chemistry (Washington), 2018-01, Vol.90 (2), p.1177-1185</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 16, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</citedby><cites>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</cites><orcidid>0000-0003-0522-2342 ; 0000-0002-8616-9207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29243478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zhongju</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Zeng, Xuyao</creatorcontrib><creatorcontrib>Weng, Rui</creatorcontrib><creatorcontrib>Shi, Xingbo</creatorcontrib><creatorcontrib>Wang, Naidong</creatorcontrib><creatorcontrib>Chen, Langxing</creatorcontrib><creatorcontrib>Xiao, Lehui</creatorcontrib><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</description><subject>Anchoring</subject><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Capsid Proteins - analysis</subject><subject>Cells</subject><subject>Cells (biology)</subject><subject>Chemistry</subject><subject>Circoviridae Infections - pathology</subject><subject>Circoviridae Infections - virology</subject><subject>Circovirus - chemistry</subject><subject>Diffusion</subject><subject>Digital imaging</subject><subject>Equipment Design</subject><subject>Gaussian process</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes - pathology</subject><subject>Hepatocytes - virology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Inspection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Normal distribution</subject><subject>Optical Imaging - instrumentation</subject><subject>Optical Imaging - methods</subject><subject>Optical microscopy</subject><subject>Organelles</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Scattering</subject><subject>Surface chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCP0DIEhcuWWzHib3HErpQadtyAK7RxJ5s3SZxaiet-iv4y3i12x441Bdfvvdm3jxCPnC25EzwL2DiEgbozDX2S9WwXJXiFVnwQrCs1Fq8JgvGWJ4JxdgROY7xhjHOGS_fkiOxEjKXSi_I369gbrfBz4PN1gGRnvewdcOW-pYC_eMCdLSCMTpLfwY_oRsirTxMaOnp4KKfgh-doZcw-BHC5EyH1A9JunH3O5sKu45eYN8EGJA-uOmafoNwm60ddpZejUmRJlw4E3w0fnx8R9600EV8f_hPyO_12a_qR7a5-n5enW4ykDyfsoKjKoTNLbYlFkalMLbRDLRRssAyl7mVhW1lwyUaAykv13lTosES2rZo8hPyee87Bn83Y5zq3kWTlk1r-jnWfKXSWyktEvrpP_TGzyFdPtaCMa21ZGqVKLmndkliwLYeg-shPNac1bvC6lRY_VRYfSgsyT4ezOemR_ssemooAWwP7OTPg1_0_Ad6KKZD</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Ye, Zhongju</creator><creator>Wei, Lin</creator><creator>Zeng, Xuyao</creator><creator>Weng, Rui</creator><creator>Shi, Xingbo</creator><creator>Wang, Naidong</creator><creator>Chen, Langxing</creator><creator>Xiao, Lehui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0522-2342</orcidid><orcidid>https://orcid.org/0000-0002-8616-9207</orcidid></search><sort><creationdate>20180116</creationdate><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><author>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchoring</topic><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Capsid Proteins - analysis</topic><topic>Cells</topic><topic>Cells (biology)</topic><topic>Chemistry</topic><topic>Circoviridae Infections - pathology</topic><topic>Circoviridae Infections - virology</topic><topic>Circovirus - chemistry</topic><topic>Diffusion</topic><topic>Digital imaging</topic><topic>Equipment Design</topic><topic>Gaussian process</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes - pathology</topic><topic>Hepatocytes - virology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Inspection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Normal distribution</topic><topic>Optical Imaging - instrumentation</topic><topic>Optical Imaging - methods</topic><topic>Optical microscopy</topic><topic>Organelles</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Scattering</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhongju</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Zeng, Xuyao</creatorcontrib><creatorcontrib>Weng, Rui</creatorcontrib><creatorcontrib>Shi, Xingbo</creatorcontrib><creatorcontrib>Wang, Naidong</creatorcontrib><creatorcontrib>Chen, Langxing</creatorcontrib><creatorcontrib>Xiao, Lehui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhongju</au><au>Wei, Lin</au><au>Zeng, Xuyao</au><au>Weng, Rui</au><au>Shi, Xingbo</au><au>Wang, Naidong</au><au>Chen, Langxing</au><au>Xiao, Lehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-01-16</date><risdate>2018</risdate><volume>90</volume><issue>2</issue><spage>1177</spage><epage>1185</epage><pages>1177-1185</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29243478</pmid><doi>10.1021/acs.analchem.7b03762</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0522-2342</orcidid><orcidid>https://orcid.org/0000-0002-8616-9207</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2018-01, Vol.90 (2), p.1177-1185 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1977779782 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anchoring Anisotropy Biocompatibility Capsid Proteins - analysis Cells Cells (biology) Chemistry Circoviridae Infections - pathology Circoviridae Infections - virology Circovirus - chemistry Diffusion Digital imaging Equipment Design Gaussian process Gold Gold - chemistry Hep G2 Cells Hepatocytes - pathology Hepatocytes - virology Humans Image analysis Image contrast Image processing Inspection Metal Nanoparticles - chemistry Microscopy Microscopy - instrumentation Microscopy - methods Nanoparticles Nanorods Normal distribution Optical Imaging - instrumentation Optical Imaging - methods Optical microscopy Organelles Polarization Proteins Scattering Surface chemistry |
title | Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background-Free%20Imaging%20of%20a%20Viral%20Capsid%20Proteins%20Coated%20Anisotropic%20Nanoparticle%20on%20a%20Living%20Cell%20Membrane%20with%20Dark-Field%20Optical%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ye,%20Zhongju&rft.date=2018-01-16&rft.volume=90&rft.issue=2&rft.spage=1177&rft.epage=1185&rft.pages=1177-1185&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b03762&rft_dat=%3Cproquest_cross%3E1977779782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008884079&rft_id=info:pmid/29243478&rfr_iscdi=true |