Loading…

Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy

Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of t...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2018-01, Vol.90 (2), p.1177-1185
Main Authors: Ye, Zhongju, Wei, Lin, Zeng, Xuyao, Weng, Rui, Shi, Xingbo, Wang, Naidong, Chen, Langxing, Xiao, Lehui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3
cites cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3
container_end_page 1185
container_issue 2
container_start_page 1177
container_title Analytical chemistry (Washington)
container_volume 90
creator Ye, Zhongju
Wei, Lin
Zeng, Xuyao
Weng, Rui
Shi, Xingbo
Wang, Naidong
Chen, Langxing
Xiao, Lehui
description Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.
doi_str_mv 10.1021/acs.analchem.7b03762
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977779782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977779782</sourcerecordid><originalsourceid>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</originalsourceid><addsrcrecordid>eNp9kUFv1DAQhS0EotvCP0DIEhcuWWzHib3HErpQadtyAK7RxJ5s3SZxaiet-iv4y3i12x441Bdfvvdm3jxCPnC25EzwL2DiEgbozDX2S9WwXJXiFVnwQrCs1Fq8JgvGWJ4JxdgROY7xhjHOGS_fkiOxEjKXSi_I369gbrfBz4PN1gGRnvewdcOW-pYC_eMCdLSCMTpLfwY_oRsirTxMaOnp4KKfgh-doZcw-BHC5EyH1A9JunH3O5sKu45eYN8EGJA-uOmafoNwm60ddpZejUmRJlw4E3w0fnx8R9600EV8f_hPyO_12a_qR7a5-n5enW4ykDyfsoKjKoTNLbYlFkalMLbRDLRRssAyl7mVhW1lwyUaAykv13lTosES2rZo8hPyee87Bn83Y5zq3kWTlk1r-jnWfKXSWyktEvrpP_TGzyFdPtaCMa21ZGqVKLmndkliwLYeg-shPNac1bvC6lRY_VRYfSgsyT4ezOemR_ssemooAWwP7OTPg1_0_Ad6KKZD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2008884079</pqid></control><display><type>article</type><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</creator><creatorcontrib>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</creatorcontrib><description>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.7b03762</identifier><identifier>PMID: 29243478</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Anchoring ; Anisotropy ; Biocompatibility ; Capsid Proteins - analysis ; Cells ; Cells (biology) ; Chemistry ; Circoviridae Infections - pathology ; Circoviridae Infections - virology ; Circovirus - chemistry ; Diffusion ; Digital imaging ; Equipment Design ; Gaussian process ; Gold ; Gold - chemistry ; Hep G2 Cells ; Hepatocytes - pathology ; Hepatocytes - virology ; Humans ; Image analysis ; Image contrast ; Image processing ; Inspection ; Metal Nanoparticles - chemistry ; Microscopy ; Microscopy - instrumentation ; Microscopy - methods ; Nanoparticles ; Nanorods ; Normal distribution ; Optical Imaging - instrumentation ; Optical Imaging - methods ; Optical microscopy ; Organelles ; Polarization ; Proteins ; Scattering ; Surface chemistry</subject><ispartof>Analytical chemistry (Washington), 2018-01, Vol.90 (2), p.1177-1185</ispartof><rights>Copyright © 2017 American Chemical Society</rights><rights>Copyright American Chemical Society Jan 16, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</citedby><cites>FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</cites><orcidid>0000-0003-0522-2342 ; 0000-0002-8616-9207</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29243478$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zhongju</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Zeng, Xuyao</creatorcontrib><creatorcontrib>Weng, Rui</creatorcontrib><creatorcontrib>Shi, Xingbo</creatorcontrib><creatorcontrib>Wang, Naidong</creatorcontrib><creatorcontrib>Chen, Langxing</creatorcontrib><creatorcontrib>Xiao, Lehui</creatorcontrib><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</description><subject>Anchoring</subject><subject>Anisotropy</subject><subject>Biocompatibility</subject><subject>Capsid Proteins - analysis</subject><subject>Cells</subject><subject>Cells (biology)</subject><subject>Chemistry</subject><subject>Circoviridae Infections - pathology</subject><subject>Circoviridae Infections - virology</subject><subject>Circovirus - chemistry</subject><subject>Diffusion</subject><subject>Digital imaging</subject><subject>Equipment Design</subject><subject>Gaussian process</subject><subject>Gold</subject><subject>Gold - chemistry</subject><subject>Hep G2 Cells</subject><subject>Hepatocytes - pathology</subject><subject>Hepatocytes - virology</subject><subject>Humans</subject><subject>Image analysis</subject><subject>Image contrast</subject><subject>Image processing</subject><subject>Inspection</subject><subject>Metal Nanoparticles - chemistry</subject><subject>Microscopy</subject><subject>Microscopy - instrumentation</subject><subject>Microscopy - methods</subject><subject>Nanoparticles</subject><subject>Nanorods</subject><subject>Normal distribution</subject><subject>Optical Imaging - instrumentation</subject><subject>Optical Imaging - methods</subject><subject>Optical microscopy</subject><subject>Organelles</subject><subject>Polarization</subject><subject>Proteins</subject><subject>Scattering</subject><subject>Surface chemistry</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kUFv1DAQhS0EotvCP0DIEhcuWWzHib3HErpQadtyAK7RxJ5s3SZxaiet-iv4y3i12x441Bdfvvdm3jxCPnC25EzwL2DiEgbozDX2S9WwXJXiFVnwQrCs1Fq8JgvGWJ4JxdgROY7xhjHOGS_fkiOxEjKXSi_I369gbrfBz4PN1gGRnvewdcOW-pYC_eMCdLSCMTpLfwY_oRsirTxMaOnp4KKfgh-doZcw-BHC5EyH1A9JunH3O5sKu45eYN8EGJA-uOmafoNwm60ddpZejUmRJlw4E3w0fnx8R9600EV8f_hPyO_12a_qR7a5-n5enW4ykDyfsoKjKoTNLbYlFkalMLbRDLRRssAyl7mVhW1lwyUaAykv13lTosES2rZo8hPyee87Bn83Y5zq3kWTlk1r-jnWfKXSWyktEvrpP_TGzyFdPtaCMa21ZGqVKLmndkliwLYeg-shPNac1bvC6lRY_VRYfSgsyT4ezOemR_ssemooAWwP7OTPg1_0_Ad6KKZD</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Ye, Zhongju</creator><creator>Wei, Lin</creator><creator>Zeng, Xuyao</creator><creator>Weng, Rui</creator><creator>Shi, Xingbo</creator><creator>Wang, Naidong</creator><creator>Chen, Langxing</creator><creator>Xiao, Lehui</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0522-2342</orcidid><orcidid>https://orcid.org/0000-0002-8616-9207</orcidid></search><sort><creationdate>20180116</creationdate><title>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</title><author>Ye, Zhongju ; Wei, Lin ; Zeng, Xuyao ; Weng, Rui ; Shi, Xingbo ; Wang, Naidong ; Chen, Langxing ; Xiao, Lehui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anchoring</topic><topic>Anisotropy</topic><topic>Biocompatibility</topic><topic>Capsid Proteins - analysis</topic><topic>Cells</topic><topic>Cells (biology)</topic><topic>Chemistry</topic><topic>Circoviridae Infections - pathology</topic><topic>Circoviridae Infections - virology</topic><topic>Circovirus - chemistry</topic><topic>Diffusion</topic><topic>Digital imaging</topic><topic>Equipment Design</topic><topic>Gaussian process</topic><topic>Gold</topic><topic>Gold - chemistry</topic><topic>Hep G2 Cells</topic><topic>Hepatocytes - pathology</topic><topic>Hepatocytes - virology</topic><topic>Humans</topic><topic>Image analysis</topic><topic>Image contrast</topic><topic>Image processing</topic><topic>Inspection</topic><topic>Metal Nanoparticles - chemistry</topic><topic>Microscopy</topic><topic>Microscopy - instrumentation</topic><topic>Microscopy - methods</topic><topic>Nanoparticles</topic><topic>Nanorods</topic><topic>Normal distribution</topic><topic>Optical Imaging - instrumentation</topic><topic>Optical Imaging - methods</topic><topic>Optical microscopy</topic><topic>Organelles</topic><topic>Polarization</topic><topic>Proteins</topic><topic>Scattering</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhongju</creatorcontrib><creatorcontrib>Wei, Lin</creatorcontrib><creatorcontrib>Zeng, Xuyao</creatorcontrib><creatorcontrib>Weng, Rui</creatorcontrib><creatorcontrib>Shi, Xingbo</creatorcontrib><creatorcontrib>Wang, Naidong</creatorcontrib><creatorcontrib>Chen, Langxing</creatorcontrib><creatorcontrib>Xiao, Lehui</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhongju</au><au>Wei, Lin</au><au>Zeng, Xuyao</au><au>Weng, Rui</au><au>Shi, Xingbo</au><au>Wang, Naidong</au><au>Chen, Langxing</au><au>Xiao, Lehui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2018-01-16</date><risdate>2018</risdate><volume>90</volume><issue>2</issue><spage>1177</spage><epage>1185</epage><pages>1177-1185</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Exploring the diffusion dynamics of a viral capsid proteins (VCP)-functionalized nanocarrier on a living cell membrane could provide much kinetic information for the better understanding of their biological functionality. Gold nanoparticles are an excellent core material of nanocarriers because of the good biocompatibility as well as versatile surface chemistry. However, due to the strong scattering background from subcellular organelles, it is a grand challenge to selectively image an individual nanocarrier on a living cell membrane. In this work, we demonstrated a convenient strategy to effectively screen the scattering background from living cells for single-particle imaging with a polarization-resolved dual-channel imaging module. By taking advantage of the polarization of anisotropic gold nanoparticles (gold nanorods, GNRs), the signals from cell components could be counteracted after subtracting the sequential images one by one, while those transiently rotating GNRs on the cell membrane still exist in the processed image. In contrast to the previously reported methods, this method does not require a complicated optical setup alignment and sophisticated digital image analysis process. According to the single-particle imaging results, the majority of VCP–GNRs were anchoring on the cell membrane with confined diffusion. Interestingly, on further inspection of the diffusion trajectories, the particles displayed anomalous confined diffusion with randomly distributed large walking steps during the whole track. Non-Gaussian step distribution was noted, indicating heterogeneous binding and desorption processes on the cell membrane. As a consequence of the robust background screening capability, this approach would find broad applications for single-particle imaging under a noisy environment, e.g., living cells.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29243478</pmid><doi>10.1021/acs.analchem.7b03762</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0522-2342</orcidid><orcidid>https://orcid.org/0000-0002-8616-9207</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2018-01, Vol.90 (2), p.1177-1185
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_1977779782
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Anchoring
Anisotropy
Biocompatibility
Capsid Proteins - analysis
Cells
Cells (biology)
Chemistry
Circoviridae Infections - pathology
Circoviridae Infections - virology
Circovirus - chemistry
Diffusion
Digital imaging
Equipment Design
Gaussian process
Gold
Gold - chemistry
Hep G2 Cells
Hepatocytes - pathology
Hepatocytes - virology
Humans
Image analysis
Image contrast
Image processing
Inspection
Metal Nanoparticles - chemistry
Microscopy
Microscopy - instrumentation
Microscopy - methods
Nanoparticles
Nanorods
Normal distribution
Optical Imaging - instrumentation
Optical Imaging - methods
Optical microscopy
Organelles
Polarization
Proteins
Scattering
Surface chemistry
title Background-Free Imaging of a Viral Capsid Proteins Coated Anisotropic Nanoparticle on a Living Cell Membrane with Dark-Field Optical Microscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A17%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Background-Free%20Imaging%20of%20a%20Viral%20Capsid%20Proteins%20Coated%20Anisotropic%20Nanoparticle%20on%20a%20Living%20Cell%20Membrane%20with%20Dark-Field%20Optical%20Microscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Ye,%20Zhongju&rft.date=2018-01-16&rft.volume=90&rft.issue=2&rft.spage=1177&rft.epage=1185&rft.pages=1177-1185&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.7b03762&rft_dat=%3Cproquest_cross%3E1977779782%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a413t-51e752d3def6e5c7347db80a8c745e6343d45df4b14ecca292183b6ece6aff5b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2008884079&rft_id=info:pmid/29243478&rfr_iscdi=true