Loading…
Consumption of alpha-linolenic acid-enriched diacylglycerol induces increase in dietary fat oxidation compared with alpha-linolenic acid-enriched triacylglycerol: A randomized, double-blind trial
Fat metabolism is an important consideration in obesity. Alpha-linolenic acid-enriched diacylglycerol (ALA-DAG), which mainly occurs as ALA esterifies to 1,3-diacyl-sn-glycerol (1,3-DAG), has beneficial effects on fat metabolism and body weight compared with triacylglycerol (TAG). Moreover, compared...
Saved in:
Published in: | Nutrition research (New York, N.Y.) N.Y.), 2017-12, Vol.48, p.85-92 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fat metabolism is an important consideration in obesity. Alpha-linolenic acid-enriched diacylglycerol (ALA-DAG), which mainly occurs as ALA esterifies to 1,3-diacyl-sn-glycerol (1,3-DAG), has beneficial effects on fat metabolism and body weight compared with triacylglycerol (TAG). Moreover, compared with ALA-TAG, ALA-DAG enhances β-oxidation activity in the small intestine and liver in rodents. We hypothesized that ALA-DAG consumption may increase dietary fat oxidation compared with ALA-TAG in humans. To examine this hypothesis, we conducted a randomized double-blind cross-over trial in 17 normal and moderately obese men and women (BMI: 25.7±2.0 kg/m2, mean±SD). Each participant was assigned to a 4-week intervention period with 2.5 g/day of ALA-DAG or ALA-TAG consumption, followed by a 4-week washout period between consumption of each diet. Dietary fat oxidation, assessed based on the 13CO2 recovery rate in the breath, was significantly increased by ALA-DAG consumption compared with ALA-TAG consumption (17.0±4.5% and 14.1±5.9%, respectively, P |
---|---|
ISSN: | 0271-5317 1879-0739 |
DOI: | 10.1016/j.nutres.2017.10.012 |