Loading…

Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate

The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2018-04, Vol.57 (15), p.3874-3886
Main Authors: Zhao, Zhiwei, Huang, Jun, Peng, Zhangquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3
cites cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3
container_end_page 3886
container_issue 15
container_start_page 3874
container_title Angewandte Chemie International Edition
container_volume 57
creator Zhao, Zhiwei
Huang, Jun
Peng, Zhangquan
description The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview. Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.
doi_str_mv 10.1002/anie.201710156
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977783253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017937839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoVqtblzLgxs3UXGaSiQuhlmqFohtdh2R6gpFpR5MZpLu-gytfr09iSi-CG1fnwP-dn8OH0BnBPYIxvdIzBz2KiSCY5HwPHZGckpQJwfbjnjGWiiInHXQcwlvkiwLzQ9ShksYoo0fopl--uqqCsFx8JyOAKqltMnbNq2uny8VX3_nkVjcNeAfhehskA-1NPdMNnKADq6sAp5vZRS93w-fBKB0_3T8M-uO0zATnaSENZIJZk2c5KZllQhqrpZ5IQy01tLCWSw65KTjmwC1mxDBSUm5LRhgB1kWX6953X3-0EBo1daGEqtIzqNugiBRCFIzmLKIXf9C3uvWz-J1aeZIscjJSvTVV-joED1a9ezfVfq4IViuzamVW7czGg_NNbWumMNnhW5URkGvg01Uw_6dO9R8fhr_lP-_AhLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017937839</pqid></control><display><type>article</type><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</creator><creatorcontrib>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</creatorcontrib><description>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview. Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201710156</identifier><identifier>PMID: 29243342</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Decomposition ; electrochemistry ; electrolytes ; Energy storage ; energy storage materials ; Energy technology ; Lithium ; Lithium carbonate ; lithium–air batteries ; Metal air batteries ; R&amp;D ; Research &amp; development</subject><ispartof>Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.3874-3886</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</citedby><cites>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</cites><orcidid>0000-0002-1668-5361 ; 0000-0002-4338-314X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29243342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview. Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</description><subject>Batteries</subject><subject>Decomposition</subject><subject>electrochemistry</subject><subject>electrolytes</subject><subject>Energy storage</subject><subject>energy storage materials</subject><subject>Energy technology</subject><subject>Lithium</subject><subject>Lithium carbonate</subject><subject>lithium–air batteries</subject><subject>Metal air batteries</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoVqtblzLgxs3UXGaSiQuhlmqFohtdh2R6gpFpR5MZpLu-gytfr09iSi-CG1fnwP-dn8OH0BnBPYIxvdIzBz2KiSCY5HwPHZGckpQJwfbjnjGWiiInHXQcwlvkiwLzQ9ShksYoo0fopl--uqqCsFx8JyOAKqltMnbNq2uny8VX3_nkVjcNeAfhehskA-1NPdMNnKADq6sAp5vZRS93w-fBKB0_3T8M-uO0zATnaSENZIJZk2c5KZllQhqrpZ5IQy01tLCWSw65KTjmwC1mxDBSUm5LRhgB1kWX6953X3-0EBo1daGEqtIzqNugiBRCFIzmLKIXf9C3uvWz-J1aeZIscjJSvTVV-joED1a9ezfVfq4IViuzamVW7czGg_NNbWumMNnhW5URkGvg01Uw_6dO9R8fhr_lP-_AhLE</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Zhao, Zhiwei</creator><creator>Huang, Jun</creator><creator>Peng, Zhangquan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid></search><sort><creationdate>20180403</creationdate><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><author>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Decomposition</topic><topic>electrochemistry</topic><topic>electrolytes</topic><topic>Energy storage</topic><topic>energy storage materials</topic><topic>Energy technology</topic><topic>Lithium</topic><topic>Lithium carbonate</topic><topic>lithium–air batteries</topic><topic>Metal air batteries</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhiwei</au><au>Huang, Jun</au><au>Peng, Zhangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-04-03</date><risdate>2018</risdate><volume>57</volume><issue>15</issue><spage>3874</spage><epage>3886</epage><pages>3874-3886</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview. Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29243342</pmid><doi>10.1002/anie.201710156</doi><tpages>13</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.3874-3886
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1977783253
source Wiley-Blackwell Read & Publish Collection
subjects Batteries
Decomposition
electrochemistry
electrolytes
Energy storage
energy storage materials
Energy technology
Lithium
Lithium carbonate
lithium–air batteries
Metal air batteries
R&D
Research & development
title Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achilles%E2%80%99%20Heel%20of%20Lithium%E2%80%93Air%20Batteries:%20Lithium%20Carbonate&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Zhiwei&rft.date=2018-04-03&rft.volume=57&rft.issue=15&rft.spage=3874&rft.epage=3886&rft.pages=3874-3886&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201710156&rft_dat=%3Cproquest_cross%3E2017937839%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017937839&rft_id=info:pmid/29243342&rfr_iscdi=true