Loading…
Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate
The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition...
Saved in:
Published in: | Angewandte Chemie International Edition 2018-04, Vol.57 (15), p.3874-3886 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3 |
container_end_page | 3886 |
container_issue | 15 |
container_start_page | 3874 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Zhao, Zhiwei Huang, Jun Peng, Zhangquan |
description | The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.
Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries. |
doi_str_mv | 10.1002/anie.201710156 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977783253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2017937839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMoVqtblzLgxs3UXGaSiQuhlmqFohtdh2R6gpFpR5MZpLu-gytfr09iSi-CG1fnwP-dn8OH0BnBPYIxvdIzBz2KiSCY5HwPHZGckpQJwfbjnjGWiiInHXQcwlvkiwLzQ9ShksYoo0fopl--uqqCsFx8JyOAKqltMnbNq2uny8VX3_nkVjcNeAfhehskA-1NPdMNnKADq6sAp5vZRS93w-fBKB0_3T8M-uO0zATnaSENZIJZk2c5KZllQhqrpZ5IQy01tLCWSw65KTjmwC1mxDBSUm5LRhgB1kWX6953X3-0EBo1daGEqtIzqNugiBRCFIzmLKIXf9C3uvWz-J1aeZIscjJSvTVV-joED1a9ezfVfq4IViuzamVW7czGg_NNbWumMNnhW5URkGvg01Uw_6dO9R8fhr_lP-_AhLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017937839</pqid></control><display><type>article</type><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</creator><creatorcontrib>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</creatorcontrib><description>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.
Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201710156</identifier><identifier>PMID: 29243342</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Batteries ; Decomposition ; electrochemistry ; electrolytes ; Energy storage ; energy storage materials ; Energy technology ; Lithium ; Lithium carbonate ; lithium–air batteries ; Metal air batteries ; R&D ; Research & development</subject><ispartof>Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.3874-3886</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</citedby><cites>FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</cites><orcidid>0000-0002-1668-5361 ; 0000-0002-4338-314X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29243342$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.
Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</description><subject>Batteries</subject><subject>Decomposition</subject><subject>electrochemistry</subject><subject>electrolytes</subject><subject>Energy storage</subject><subject>energy storage materials</subject><subject>Energy technology</subject><subject>Lithium</subject><subject>Lithium carbonate</subject><subject>lithium–air batteries</subject><subject>Metal air batteries</subject><subject>R&D</subject><subject>Research & development</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMoVqtblzLgxs3UXGaSiQuhlmqFohtdh2R6gpFpR5MZpLu-gytfr09iSi-CG1fnwP-dn8OH0BnBPYIxvdIzBz2KiSCY5HwPHZGckpQJwfbjnjGWiiInHXQcwlvkiwLzQ9ShksYoo0fopl--uqqCsFx8JyOAKqltMnbNq2uny8VX3_nkVjcNeAfhehskA-1NPdMNnKADq6sAp5vZRS93w-fBKB0_3T8M-uO0zATnaSENZIJZk2c5KZllQhqrpZ5IQy01tLCWSw65KTjmwC1mxDBSUm5LRhgB1kWX6953X3-0EBo1daGEqtIzqNugiBRCFIzmLKIXf9C3uvWz-J1aeZIscjJSvTVV-joED1a9ezfVfq4IViuzamVW7czGg_NNbWumMNnhW5URkGvg01Uw_6dO9R8fhr_lP-_AhLE</recordid><startdate>20180403</startdate><enddate>20180403</enddate><creator>Zhao, Zhiwei</creator><creator>Huang, Jun</creator><creator>Peng, Zhangquan</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid></search><sort><creationdate>20180403</creationdate><title>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</title><author>Zhao, Zhiwei ; Huang, Jun ; Peng, Zhangquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Decomposition</topic><topic>electrochemistry</topic><topic>electrolytes</topic><topic>Energy storage</topic><topic>energy storage materials</topic><topic>Energy technology</topic><topic>Lithium</topic><topic>Lithium carbonate</topic><topic>lithium–air batteries</topic><topic>Metal air batteries</topic><topic>R&D</topic><topic>Research & development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Zhiwei</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><creatorcontrib>Peng, Zhangquan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Zhiwei</au><au>Huang, Jun</au><au>Peng, Zhangquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-04-03</date><risdate>2018</risdate><volume>57</volume><issue>15</issue><spage>3874</spage><epage>3886</epage><pages>3874-3886</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The lithium–air battery (LAB) is envisaged as an ultimate energy storage device because of its highest theoretical specific energy among all known batteries. However, parasitic reactions bring about vexing issues on the efficiency and longevity of the LAB, among which the formation and decomposition of lithium carbonate Li2CO3 is of paramount importance. The discovery of Li2CO3 as the main discharge product in carbonate‐based electrolytes once brought researchers to “the end of the idyll“ in the early 2010s. In the past few years, tremendous efforts have been made to understand the formation and decomposition mechanisms of Li2CO3, as well as to conceive novel chemical/material strategies to suppress the Li2CO3 formation and to facilitate the Li2CO3 decomposition. Moreover, the study on Li2CO3 in LABs is opening up a new research field in energy technology. Considering the rapid development and innumerous emerging issues, it is timely to recapitulate the current understandings, define the ambiguities and the scientific gaps, and discuss topics of high priority for future research, which is the aim of this Minireview.
Formation and decomposition of Li2CO3: In lithium–air batteries, Li2CO3 is a major by‐product that can lead to cell dry‐out and early failure. Therefore, understanding the formation and decomposition mechanisms of Li2CO3 lays the basis for a better design of lithium–air batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29243342</pmid><doi>10.1002/anie.201710156</doi><tpages>13</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid><orcidid>https://orcid.org/0000-0002-4338-314X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-04, Vol.57 (15), p.3874-3886 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1977783253 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Batteries Decomposition electrochemistry electrolytes Energy storage energy storage materials Energy technology Lithium Lithium carbonate lithium–air batteries Metal air batteries R&D Research & development |
title | Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Achilles%E2%80%99%20Heel%20of%20Lithium%E2%80%93Air%20Batteries:%20Lithium%20Carbonate&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Zhao,%20Zhiwei&rft.date=2018-04-03&rft.volume=57&rft.issue=15&rft.spage=3874&rft.epage=3886&rft.pages=3874-3886&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201710156&rft_dat=%3Cproquest_cross%3E2017937839%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4766-89be473fb5451c3f379bfa9ad9b2f2b28ff696e5b8606e6f031b31c26fc3131e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2017937839&rft_id=info:pmid/29243342&rfr_iscdi=true |