Loading…

Enhanced phytoremediation: A study of mycorrhizoremediation of heavy metal-contaminated soil

Arbuscular mycorrhizal fungi (AMF) are microscopic fungi that occur naturally in soil and form a symbiosis with plant roots. By colonizing the roots, the fungus increases plant growth by making soil essential elements like zinc and phosphorus more accessible. AMF can play a role in the phytoremediat...

Full description

Saved in:
Bibliographic Details
Published in:Remediation (New York, N.Y.) N.Y.), 2006-12, Vol.17 (1), p.97-110
Main Authors: Giasson, Philippe, Jaouich, Alfred, Cayer, Pierre, Gagné, Serge, Moutoglis, Peter, Massicotte, Luc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Arbuscular mycorrhizal fungi (AMF) are microscopic fungi that occur naturally in soil and form a symbiosis with plant roots. By colonizing the roots, the fungus increases plant growth by making soil essential elements like zinc and phosphorus more accessible. AMF can play a role in the phytoremediation of heavy metal–contaminated soil (mycorrhizoremediation). Two research experiments were conducted to evaluate the impact of AMF on the extraction of different heavy metals (arsenic, cadmium, lead, selenium, and zinc) in contaminated soil. A grass mixture composed of Festuca rubra, Festuca eliator, Agropyron repens, and Trifolium repens was used in the experiments, and four different types of AMF were investigated: Glomus intraradices, Glomus mosseae, Glomus etunicatum, and Gigaspora gigantea. The results of the study showed that heavy metal extraction by Glomus intraradices colonized plants was the highest of all four AMF tested and was generally higher than nonmycorrhizal plants, depending on the heavy metal concentration in soil and whether it interacted with other metals in soil. However, metal extraction by AMF colonized grasses reached a plateau after an approximately two‐month period showing no further phytoaccumulation. © 2006 Wiley Periodicals, Inc.
ISSN:1051-5658
1520-6831
1520-6831
1051-5658
DOI:10.1002/rem.20115