Loading…

Decontamination of Beef Subprimal Cuts Intended for Blade Tenderization or Moisture Enhancement

The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of food protection 2007-05, Vol.70 (5), p.1174-1180
Main Authors: Heller, C.E, Scanga, J.A, Sofos, J.N, Belk, K.E, Warren-Serna, W, Bellinger, G.R, Bacon, R.T, Rossman, M.L, Smith, G.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The prevalence of Escherichia coli O157:H7 on beef subprimal cuts intended for mechanical tenderization was evaluated. This evaluation was followed by the assessment of five antimicrobial interventions at minimizing the risk of transferring E. coli O157:H7 to the interior of inoculated subprimal cuts during blade tenderization (BT) or moisture enhancement (ME). Prevalence of E. coli O157:H7 on 1,014 uninoculated beef subprimals collected from six packing facilities was 0.2%. Outside round pieces inoculated with E. coli O157:H7 at 10(4) CFU/100 cm2 were treated with (i) no intervention, (ii) surface trimming, (iii) hot water (82 degrees C), (iv) warm 2.5% lactic acid (55 degrees C), (v) warm 5.0% lactic acid (55 degrees C), or (vi) 2% activated lactoferrin followed by warm 5.0% lactic acid (55 degrees C) and then submitted to BT or ME. Prevalence (n = 196) of internalized (BT and ME) E. coli O157:H7 was 99%. Enumeration of E. coli O157:H7 (n = 192) revealed mean surface reductions of 0.93 to 1.10 log CFU/100 cm2 for all antimicrobial interventions. E. coli O157:H7 was detected on 3 of the 76 internal BT samples and 73 of the 76 internal ME samples. Internal ME samples with no intervention had significantly higher mean E. coli O157:H7 populations than did those internal samples treated with an intervention, but there were no significant differences in E. coli O157:H7 populations among internal BT samples. Results of this study demonstrate that the incidence of E. coli O157:H7 on the surface of beef subprimal cuts is low and that interventions applied before mechanical tenderization can effectively reduce the transfer of low concentrations of E. coli O157:H7 to the interior of beef subprimal cuts.
ISSN:0362-028X
1944-9097
DOI:10.4315/0362-028X-70.5.1174