Loading…

Atom-Centered Potentials with Dispersion-Corrected Minimal-Basis-Set Hartree–Fock: An Efficient and Accurate Computational Approach for Large Molecular Systems

We present a computational methodology based on atom-centered potentials (ACPs) for the efficient and accurate structural modeling of large molecular systems. ACPs are atom-centered one-electron potentials that have the same functional form as effective-core potentials. In recent works, we showed th...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical theory and computation 2018-02, Vol.14 (2), p.726-738
Main Authors: Prasad, Viki Kumar, Otero-de-la-Roza, Alberto, DiLabio, Gino A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a computational methodology based on atom-centered potentials (ACPs) for the efficient and accurate structural modeling of large molecular systems. ACPs are atom-centered one-electron potentials that have the same functional form as effective-core potentials. In recent works, we showed that ACPs can be used to produce a correction to the ground-state wave function and electronic energy to alleviate shortcomings in the underlying model chemistry. In this work, we present ACPs for H, C, N, and O atoms that are specifically designed to predict accurate non-covalent binding energies and inter- and intramolecular geometries when combined with dispersion-corrected Hartree–Fock (HF-D3) and a minimal basis-set (scaled MINI or MINIs). For example, the combined HF-D3/MINIs-ACP method demonstrates excellent performance, with mean absolute errors of 0.36 and 0.28 kcal/mol for the S22x5 and S66x8 benchmark sets, respectively, relative to highly correlated complete-basis-set data. The application of ACPs results in a significant decrease in error compared to uncorrected HF-D3/MINIs for all benchmark sets examined. In addition, HF-D3/MINIs-ACP, has a cost only slightly higher than a minimal-basis-set HF calculation and can be used with any electronic structure program for molecular quantum chemistry that uses Gaussian basis sets and effective-core potentials.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.7b01158