Loading…

MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production

It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2018-01, Vol.12 (1), p.751-758
Main Authors: Zhang, Shuqu, Liu, Xia, Liu, Chengbin, Luo, Shenglian, Wang, Longlu, Cai, Tao, Zeng, Yunxiong, Yuan, Jili, Dong, Wanyue, Pei, Yong, Liu, Yutang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 758
container_issue 1
container_start_page 751
container_title ACS nano
container_volume 12
creator Zhang, Shuqu
Liu, Xia
Liu, Chengbin
Luo, Shenglian
Wang, Longlu
Cai, Tao
Zeng, Yunxiong
Yuan, Jili
Dong, Wanyue
Pei, Yong
Liu, Yutang
description It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional (2D) atomic-level heterostructure (MoS2QDs@Vs-M-ZnIn2S4). The electronic structure calculations indicated that the positive charge density of the Zn atom around the sulfur vacancy (Vs) was more intensive than other Zn atoms. The Vs confined in monolayered ZnIn2S4 established an important link between the electronic manipulation and activities of ZnIn2S4. The Vs acted as electron traps, prevented vertical transmission of electrons, and enriched electrons onto the Zn facet. The Vs-induced atomic-level heterostructure sewed up vacancy structures of Vs-M-ZnIn2S4, resulting in a highly efficient interface with low edge contact resistance. Photogenerated electrons could quickly migrate to MoS2QDs through the intimate Zn–S bond interfaces. As a result, MoS2QDs@Vs-M-ZnIn2S4 showed a high PHR activity of 6.884 mmol g–1 h–1, which was 11 times higher than 0.623 mmol g–1 h–1 for bulk ZnIn2S4, and the apparent quantum efficiency reached as high as 63.87% (420 nm). This work provides a prototype material for looking into the role of vacancies between electronic structures and activities in 2D photocatalytic materials and gives insights into PHR systems at the atomic level.
doi_str_mv 10.1021/acsnano.7b07974
format article
fullrecord <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979504820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979504820</sourcerecordid><originalsourceid>FETCH-LOGICAL-a224t-79adcb24b8009374f86758554bcd851bfb25d12d1038fcb86272ccfd3f1e45f53</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhoMoWKtnr3MUJHV3k80m3oofbaHFSlXES9hsNjYl3dHdjZK_4K820uJp5vDwvjNPEJxTMqKE0SupnJEGR6IgIhPxQTCgWZSEJE1eD_93To-DE-c2hHCRimQQ_CxwxeCxlca3W7hFDxOL334NM1O2SpdQdLCCF6mkUbV2UBuQ8GZmhq1iWKDBRnbaXsPY47ZW4Vx_6Qam2muLzttW-dZqqNDCco0elfSy6XytYNqVFt-1gaXFvsjXaE6Do0o2Tp_t5zB4vr97upmG84fJ7GY8DyVjsQ9FJktVsLhICckiEVdpInjKeVyosv-vqArGS8pKSqK0UkWaMMGUqsqoojrmFY-GwcUu98PiZ6udz7e1U7pppNHYupxmIuMkThnp0csd2svNN9ha0x-WU5L_Gc_3xvO98egXX1p3Qw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979504820</pqid></control><display><type>article</type><title>MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Zhang, Shuqu ; Liu, Xia ; Liu, Chengbin ; Luo, Shenglian ; Wang, Longlu ; Cai, Tao ; Zeng, Yunxiong ; Yuan, Jili ; Dong, Wanyue ; Pei, Yong ; Liu, Yutang</creator><creatorcontrib>Zhang, Shuqu ; Liu, Xia ; Liu, Chengbin ; Luo, Shenglian ; Wang, Longlu ; Cai, Tao ; Zeng, Yunxiong ; Yuan, Jili ; Dong, Wanyue ; Pei, Yong ; Liu, Yutang</creatorcontrib><description>It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional (2D) atomic-level heterostructure (MoS2QDs@Vs-M-ZnIn2S4). The electronic structure calculations indicated that the positive charge density of the Zn atom around the sulfur vacancy (Vs) was more intensive than other Zn atoms. The Vs confined in monolayered ZnIn2S4 established an important link between the electronic manipulation and activities of ZnIn2S4. The Vs acted as electron traps, prevented vertical transmission of electrons, and enriched electrons onto the Zn facet. The Vs-induced atomic-level heterostructure sewed up vacancy structures of Vs-M-ZnIn2S4, resulting in a highly efficient interface with low edge contact resistance. Photogenerated electrons could quickly migrate to MoS2QDs through the intimate Zn–S bond interfaces. As a result, MoS2QDs@Vs-M-ZnIn2S4 showed a high PHR activity of 6.884 mmol g–1 h–1, which was 11 times higher than 0.623 mmol g–1 h–1 for bulk ZnIn2S4, and the apparent quantum efficiency reached as high as 63.87% (420 nm). This work provides a prototype material for looking into the role of vacancies between electronic structures and activities in 2D photocatalytic materials and gives insights into PHR systems at the atomic level.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b07974</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS nano, 2018-01, Vol.12 (1), p.751-758</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0585-2045 ; 0000-0002-5664-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Shuqu</creatorcontrib><creatorcontrib>Liu, Xia</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><creatorcontrib>Luo, Shenglian</creatorcontrib><creatorcontrib>Wang, Longlu</creatorcontrib><creatorcontrib>Cai, Tao</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yuan, Jili</creatorcontrib><creatorcontrib>Dong, Wanyue</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Liu, Yutang</creatorcontrib><title>MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional (2D) atomic-level heterostructure (MoS2QDs@Vs-M-ZnIn2S4). The electronic structure calculations indicated that the positive charge density of the Zn atom around the sulfur vacancy (Vs) was more intensive than other Zn atoms. The Vs confined in monolayered ZnIn2S4 established an important link between the electronic manipulation and activities of ZnIn2S4. The Vs acted as electron traps, prevented vertical transmission of electrons, and enriched electrons onto the Zn facet. The Vs-induced atomic-level heterostructure sewed up vacancy structures of Vs-M-ZnIn2S4, resulting in a highly efficient interface with low edge contact resistance. Photogenerated electrons could quickly migrate to MoS2QDs through the intimate Zn–S bond interfaces. As a result, MoS2QDs@Vs-M-ZnIn2S4 showed a high PHR activity of 6.884 mmol g–1 h–1, which was 11 times higher than 0.623 mmol g–1 h–1 for bulk ZnIn2S4, and the apparent quantum efficiency reached as high as 63.87% (420 nm). This work provides a prototype material for looking into the role of vacancies between electronic structures and activities in 2D photocatalytic materials and gives insights into PHR systems at the atomic level.</description><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhoMoWKtnr3MUJHV3k80m3oofbaHFSlXES9hsNjYl3dHdjZK_4K820uJp5vDwvjNPEJxTMqKE0SupnJEGR6IgIhPxQTCgWZSEJE1eD_93To-DE-c2hHCRimQQ_CxwxeCxlca3W7hFDxOL334NM1O2SpdQdLCCF6mkUbV2UBuQ8GZmhq1iWKDBRnbaXsPY47ZW4Vx_6Qam2muLzttW-dZqqNDCco0elfSy6XytYNqVFt-1gaXFvsjXaE6Do0o2Tp_t5zB4vr97upmG84fJ7GY8DyVjsQ9FJktVsLhICckiEVdpInjKeVyosv-vqArGS8pKSqK0UkWaMMGUqsqoojrmFY-GwcUu98PiZ6udz7e1U7pppNHYupxmIuMkThnp0csd2svNN9ha0x-WU5L_Gc_3xvO98egXX1p3Qw</recordid><startdate>20180123</startdate><enddate>20180123</enddate><creator>Zhang, Shuqu</creator><creator>Liu, Xia</creator><creator>Liu, Chengbin</creator><creator>Luo, Shenglian</creator><creator>Wang, Longlu</creator><creator>Cai, Tao</creator><creator>Zeng, Yunxiong</creator><creator>Yuan, Jili</creator><creator>Dong, Wanyue</creator><creator>Pei, Yong</creator><creator>Liu, Yutang</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-0585-2045</orcidid><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></search><sort><creationdate>20180123</creationdate><title>MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production</title><author>Zhang, Shuqu ; Liu, Xia ; Liu, Chengbin ; Luo, Shenglian ; Wang, Longlu ; Cai, Tao ; Zeng, Yunxiong ; Yuan, Jili ; Dong, Wanyue ; Pei, Yong ; Liu, Yutang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a224t-79adcb24b8009374f86758554bcd851bfb25d12d1038fcb86272ccfd3f1e45f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Shuqu</creatorcontrib><creatorcontrib>Liu, Xia</creatorcontrib><creatorcontrib>Liu, Chengbin</creatorcontrib><creatorcontrib>Luo, Shenglian</creatorcontrib><creatorcontrib>Wang, Longlu</creatorcontrib><creatorcontrib>Cai, Tao</creatorcontrib><creatorcontrib>Zeng, Yunxiong</creatorcontrib><creatorcontrib>Yuan, Jili</creatorcontrib><creatorcontrib>Dong, Wanyue</creatorcontrib><creatorcontrib>Pei, Yong</creatorcontrib><creatorcontrib>Liu, Yutang</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Shuqu</au><au>Liu, Xia</au><au>Liu, Chengbin</au><au>Luo, Shenglian</au><au>Wang, Longlu</au><au>Cai, Tao</au><au>Zeng, Yunxiong</au><au>Yuan, Jili</au><au>Dong, Wanyue</au><au>Pei, Yong</au><au>Liu, Yutang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-01-23</date><risdate>2018</risdate><volume>12</volume><issue>1</issue><spage>751</spage><epage>758</epage><pages>751-758</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>It is highly demanded to steer the charge flow in photocatalysts for efficient photocatalytic hydrogen reactions (PHRs). In this study, we developed a smart strategy to position MoS2 quantum dots (QDs) at the S vacancies on a Zn facet in monolayered ZnIn2S4 (Vs-M-ZnIn2S4) to craft a two-dimensional (2D) atomic-level heterostructure (MoS2QDs@Vs-M-ZnIn2S4). The electronic structure calculations indicated that the positive charge density of the Zn atom around the sulfur vacancy (Vs) was more intensive than other Zn atoms. The Vs confined in monolayered ZnIn2S4 established an important link between the electronic manipulation and activities of ZnIn2S4. The Vs acted as electron traps, prevented vertical transmission of electrons, and enriched electrons onto the Zn facet. The Vs-induced atomic-level heterostructure sewed up vacancy structures of Vs-M-ZnIn2S4, resulting in a highly efficient interface with low edge contact resistance. Photogenerated electrons could quickly migrate to MoS2QDs through the intimate Zn–S bond interfaces. As a result, MoS2QDs@Vs-M-ZnIn2S4 showed a high PHR activity of 6.884 mmol g–1 h–1, which was 11 times higher than 0.623 mmol g–1 h–1 for bulk ZnIn2S4, and the apparent quantum efficiency reached as high as 63.87% (420 nm). This work provides a prototype material for looking into the role of vacancies between electronic structures and activities in 2D photocatalytic materials and gives insights into PHR systems at the atomic level.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsnano.7b07974</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0585-2045</orcidid><orcidid>https://orcid.org/0000-0002-5664-0950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-01, Vol.12 (1), p.751-758
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1979504820
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title MoS2 Quantum Dot Growth Induced by S Vacancies in a ZnIn2S4 Monolayer: Atomic-Level Heterostructure for Photocatalytic Hydrogen Production
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T12%3A38%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MoS2%20Quantum%20Dot%20Growth%20Induced%20by%20S%20Vacancies%20in%20a%20ZnIn2S4%20Monolayer:%20Atomic-Level%20Heterostructure%20for%20Photocatalytic%20Hydrogen%20Production&rft.jtitle=ACS%20nano&rft.au=Zhang,%20Shuqu&rft.date=2018-01-23&rft.volume=12&rft.issue=1&rft.spage=751&rft.epage=758&rft.pages=751-758&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b07974&rft_dat=%3Cproquest_acs_j%3E1979504820%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a224t-79adcb24b8009374f86758554bcd851bfb25d12d1038fcb86272ccfd3f1e45f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1979504820&rft_id=info:pmid/&rfr_iscdi=true