Loading…

CpG-ODN exerts a neuroprotective effect via the TLR9/pAMPK signaling pathway by activation of autophagy in a neonatal HIE rat model

Hypoxic Ischemic Encephalopathy (HIE) is an injury caused to the brain due to prolonged lack of oxygen and blood supply which results in death or long-term disabilities. The main aim of this study was to investigate the role of Cytosine-phospho-guanine oligodeoxynucleotide (CpG-ODN) in autophagy aft...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 2018-03, Vol.301 (Pt A), p.70-80
Main Authors: Ye, Lan, Feng, Zhanhui, Doycheva, Desislava, Malaguit, Jay, Dixon, Brandon, Xu, Ningbo, Zhang, John H., Tang, Jiping
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypoxic Ischemic Encephalopathy (HIE) is an injury caused to the brain due to prolonged lack of oxygen and blood supply which results in death or long-term disabilities. The main aim of this study was to investigate the role of Cytosine-phospho-guanine oligodeoxynucleotide (CpG-ODN) in autophagy after HIE. Ten-day old (P10) rat pups underwent right common carotid artery ligation followed by 2.5h of hypoxia as previously described by Rice-Vannucci. At 1h post HIE, rats were intranasally administered with recombinant CpG-ODN. Time-course expression levels of endogenous key proteins, TLR9, pAMPK/AMPK, LC3II/I, and LAMP1 involved in CpG-ODN's protective effects were measured using western blot. Short (48h) and long (4w) term neurobehavior studies were performed using righting reflex, negative geotaxis, water maze, foot fault and Rota rod tests. Brain samples were collected after long term for histological analysis. Furthermore, to elucidate the pathway via which CpG-ODN confers protection, TLR9 and AMPK inhibitors were used. Time course results showed that the expression of TLR9, pAMPK/AMPK, LC3II/I, LAMP1 increased after HIE. Neurobehavioral studies showed that HIE induced a significant delay in development and resulted in cognitive and motor function deficits. However, CpG-ODN ameliorated HIE-induced outcomes and improved long term neurological deficits. In addition, CpG-ODN increased expression of pAMPK/AMPK, p-ULK1/ULK1, P-AMBRA1/AMBRA1, LC3II/I and LAMP1 while inhibition of TLR9 and AMPK reversed those effects. In summary, CpG-ODN increased HIE-induced autophagy and improved short and long term neurobehavioral outcomes which may be mediated by the TLR9/pAMPK signaling pathway after HIE. [Display omitted] •Administration of exogenous CpG-ODN significantly increased autophagy and improved neurological deficits.•Autophagy plays a major role in early brain injury after HIE.•TLR9/AMPK/ULK/AMBRA pathway is one of the pathways activated which leads to autophagy in early brain injury.•Induction of autophagy immediately after injury may be the key to treat HIE.
ISSN:0014-4886
1090-2430
DOI:10.1016/j.expneurol.2017.12.008