Loading…
Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity
Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on...
Saved in:
Published in: | ACS applied materials & interfaces 2018-01, Vol.10 (4), p.4001-4009 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4009 |
container_issue | 4 |
container_start_page | 4001 |
container_title | ACS applied materials & interfaces |
container_volume | 10 |
creator | Liu, Bing Ye, Liqun Wang, Ran Yang, Jingfeng Zhang, Yuexing Guan, Rong Tian, Lihong Chen, Xiaobo |
description | Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO2 reduction have gained little attention. In this work, phosphorus-doped g-C3N4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH2PO2·H2O). The phosphine gas generated from the thermal decomposition of NaH2PO2·H2O induces the formation of P-g-C3N4 nanotubes from g-C3N4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C3N4. The photocatalytic activities are dramatically enhanced in the reduction both of CO2 to produce CO and CH4 and of water to produce H2 because of the efficient suppression of the recombination of electrons and holes. The CO2 adsorption capacity is improved to 3.14 times, and the production of CO and CH4 from CO2 increases to 3.10 and 13.92 times that on g-C3N4, respectively. The total evolution ratio of CO/CH4 dramatically decreases to 1.30 from 6.02 for g-C3N4, indicating a higher selectivity of CH4 product on P-g-C3N4, which is likely ascribed to the unique nanotubes structure and amino-rich surface. |
doi_str_mv | 10.1021/acsami.7b17503 |
format | article |
fullrecord | <record><control><sourceid>proquest_acs_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1980539545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1980539545</sourcerecordid><originalsourceid>FETCH-LOGICAL-a223t-9b154736d6f3a57882889bb18175c2eada4a08e3162c45888c31e7f131eb43423</originalsourceid><addsrcrecordid>eNo9UU1LAzEUXERBrV495yji1nx2s8dS6weIFdTz8jabZVO2yZpklf4bf6opLV7eezDDzGMmy64InhJMyR2oABszLWpSCMyOsjNScp5LKujx_835aXYewhrjGaNYnGW_b50LQ-f8GPJ7N-gGPXoYOhONQgvwtbPo1URvGo1ewbo41jqgHxM7NN8Y63JvVIfeR9-C0qh1Hi3b1iijbUSLFU0SQxy9vkVL24FVST75RacgQr_decxVNN8mbm8R2AR614wqonfd6wNwkZ200Ad9ediT7PNh-bF4yl9Wj8-L-UsOlLKYlzURvGCzZtYyEIWUVMqyrolMYSiqoQEOWGpGZlRxIaVUjOiiJWnWnHHKJtn1Xnfw7mvUIVYbE5Tue7DajaEipcSClYKLRL3ZU1Pi1dqN3qbHKoKrXQ3VvobqUAP7A4BKfeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980539545</pqid></control><display><type>article</type><title>Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Liu, Bing ; Ye, Liqun ; Wang, Ran ; Yang, Jingfeng ; Zhang, Yuexing ; Guan, Rong ; Tian, Lihong ; Chen, Xiaobo</creator><creatorcontrib>Liu, Bing ; Ye, Liqun ; Wang, Ran ; Yang, Jingfeng ; Zhang, Yuexing ; Guan, Rong ; Tian, Lihong ; Chen, Xiaobo</creatorcontrib><description>Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO2 reduction have gained little attention. In this work, phosphorus-doped g-C3N4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH2PO2·H2O). The phosphine gas generated from the thermal decomposition of NaH2PO2·H2O induces the formation of P-g-C3N4 nanotubes from g-C3N4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C3N4. The photocatalytic activities are dramatically enhanced in the reduction both of CO2 to produce CO and CH4 and of water to produce H2 because of the efficient suppression of the recombination of electrons and holes. The CO2 adsorption capacity is improved to 3.14 times, and the production of CO and CH4 from CO2 increases to 3.10 and 13.92 times that on g-C3N4, respectively. The total evolution ratio of CO/CH4 dramatically decreases to 1.30 from 6.02 for g-C3N4, indicating a higher selectivity of CH4 product on P-g-C3N4, which is likely ascribed to the unique nanotubes structure and amino-rich surface.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b17503</identifier><language>eng</language><publisher>American Chemical Society</publisher><ispartof>ACS applied materials & interfaces, 2018-01, Vol.10 (4), p.4001-4009</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-3943-5461 ; 0000-0001-6410-689X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Yang, Jingfeng</creatorcontrib><creatorcontrib>Zhang, Yuexing</creatorcontrib><creatorcontrib>Guan, Rong</creatorcontrib><creatorcontrib>Tian, Lihong</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><title>Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity</title><title>ACS applied materials & interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO2 reduction have gained little attention. In this work, phosphorus-doped g-C3N4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH2PO2·H2O). The phosphine gas generated from the thermal decomposition of NaH2PO2·H2O induces the formation of P-g-C3N4 nanotubes from g-C3N4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C3N4. The photocatalytic activities are dramatically enhanced in the reduction both of CO2 to produce CO and CH4 and of water to produce H2 because of the efficient suppression of the recombination of electrons and holes. The CO2 adsorption capacity is improved to 3.14 times, and the production of CO and CH4 from CO2 increases to 3.10 and 13.92 times that on g-C3N4, respectively. The total evolution ratio of CO/CH4 dramatically decreases to 1.30 from 6.02 for g-C3N4, indicating a higher selectivity of CH4 product on P-g-C3N4, which is likely ascribed to the unique nanotubes structure and amino-rich surface.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9UU1LAzEUXERBrV495yji1nx2s8dS6weIFdTz8jabZVO2yZpklf4bf6opLV7eezDDzGMmy64InhJMyR2oABszLWpSCMyOsjNScp5LKujx_835aXYewhrjGaNYnGW_b50LQ-f8GPJ7N-gGPXoYOhONQgvwtbPo1URvGo1ewbo41jqgHxM7NN8Y63JvVIfeR9-C0qh1Hi3b1iijbUSLFU0SQxy9vkVL24FVST75RacgQr_decxVNN8mbm8R2AR614wqonfd6wNwkZ200Ad9ediT7PNh-bF4yl9Wj8-L-UsOlLKYlzURvGCzZtYyEIWUVMqyrolMYSiqoQEOWGpGZlRxIaVUjOiiJWnWnHHKJtn1Xnfw7mvUIVYbE5Tue7DajaEipcSClYKLRL3ZU1Pi1dqN3qbHKoKrXQ3VvobqUAP7A4BKfeg</recordid><startdate>20180131</startdate><enddate>20180131</enddate><creator>Liu, Bing</creator><creator>Ye, Liqun</creator><creator>Wang, Ran</creator><creator>Yang, Jingfeng</creator><creator>Zhang, Yuexing</creator><creator>Guan, Rong</creator><creator>Tian, Lihong</creator><creator>Chen, Xiaobo</creator><general>American Chemical Society</general><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3943-5461</orcidid><orcidid>https://orcid.org/0000-0001-6410-689X</orcidid></search><sort><creationdate>20180131</creationdate><title>Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity</title><author>Liu, Bing ; Ye, Liqun ; Wang, Ran ; Yang, Jingfeng ; Zhang, Yuexing ; Guan, Rong ; Tian, Lihong ; Chen, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a223t-9b154736d6f3a57882889bb18175c2eada4a08e3162c45888c31e7f131eb43423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bing</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Yang, Jingfeng</creatorcontrib><creatorcontrib>Zhang, Yuexing</creatorcontrib><creatorcontrib>Guan, Rong</creatorcontrib><creatorcontrib>Tian, Lihong</creatorcontrib><creatorcontrib>Chen, Xiaobo</creatorcontrib><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials & interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bing</au><au>Ye, Liqun</au><au>Wang, Ran</au><au>Yang, Jingfeng</au><au>Zhang, Yuexing</au><au>Guan, Rong</au><au>Tian, Lihong</au><au>Chen, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity</atitle><jtitle>ACS applied materials & interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-01-31</date><risdate>2018</risdate><volume>10</volume><issue>4</issue><spage>4001</spage><epage>4009</epage><pages>4001-4009</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Phosphorus-doped graphitic carbon nitrides (P-g-C3N4) have recently emerged as promising visible-light photocatalysts for both hydrogen generation and clean environment applications because of fast charge carrier transfer and increased light absorption. However, their photocatalytic performances on CO2 reduction have gained little attention. In this work, phosphorus-doped g-C3N4 nanotubes are synthesized through the one-step thermal reaction of melamine and sodium hypophosphite monohydrate (NaH2PO2·H2O). The phosphine gas generated from the thermal decomposition of NaH2PO2·H2O induces the formation of P-g-C3N4 nanotubes from g-C3N4 nanosheets, leads to an enlarged BET surface area and a unique mesoporous structure, and creates an amino-rich surface. The interstitial doping phosphorus also down shifts the conduction and valence band positions and narrows the band gap of g-C3N4. The photocatalytic activities are dramatically enhanced in the reduction both of CO2 to produce CO and CH4 and of water to produce H2 because of the efficient suppression of the recombination of electrons and holes. The CO2 adsorption capacity is improved to 3.14 times, and the production of CO and CH4 from CO2 increases to 3.10 and 13.92 times that on g-C3N4, respectively. The total evolution ratio of CO/CH4 dramatically decreases to 1.30 from 6.02 for g-C3N4, indicating a higher selectivity of CH4 product on P-g-C3N4, which is likely ascribed to the unique nanotubes structure and amino-rich surface.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.7b17503</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3943-5461</orcidid><orcidid>https://orcid.org/0000-0001-6410-689X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1944-8244 |
ispartof | ACS applied materials & interfaces, 2018-01, Vol.10 (4), p.4001-4009 |
issn | 1944-8244 1944-8252 |
language | eng |
recordid | cdi_proquest_miscellaneous_1980539545 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
title | Phosphorus-Doped Graphitic Carbon Nitride Nanotubes with Amino-rich Surface for Efficient CO2 Capture, Enhanced Photocatalytic Activity, and Product Selectivity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A54%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_acs_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphorus-Doped%20Graphitic%20Carbon%20Nitride%20Nanotubes%20with%20Amino-rich%20Surface%20for%20Efficient%20CO2%20Capture,%20Enhanced%20Photocatalytic%20Activity,%20and%20Product%20Selectivity&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Bing&rft.date=2018-01-31&rft.volume=10&rft.issue=4&rft.spage=4001&rft.epage=4009&rft.pages=4001-4009&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b17503&rft_dat=%3Cproquest_acs_j%3E1980539545%3C/proquest_acs_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a223t-9b154736d6f3a57882889bb18175c2eada4a08e3162c45888c31e7f131eb43423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1980539545&rft_id=info:pmid/&rfr_iscdi=true |