Loading…
Engineering Biocompatible Hydrogels from Bicomponent Natural Nanofibers for Anticancer Drug Delivery
Natural hydrogels have attracted extensive research interest and shown great potential for many biomedical applications. In this study, a series of biocompatible hydrogels was reported based on the self-assembly of positively charged partially deacetylated α-chitin nanofibers (α-DECHN) and negativel...
Saved in:
Published in: | Journal of agricultural and food chemistry 2018-01, Vol.66 (4), p.935-942 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Natural hydrogels have attracted extensive research interest and shown great potential for many biomedical applications. In this study, a series of biocompatible hydrogels was reported based on the self-assembly of positively charged partially deacetylated α-chitin nanofibers (α-DECHN) and negatively charged 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCNF) for anticancer drug delivery. The formation mechanisms of the α-DECHN/TOCNF hydrogels with different mixing proportions were studied, and their morphological, mechanical, and swelling properties were comprehensively investigated. Additionally, the drug delivery performance of the hydrogels was compared via sustained release test of an anticancer drug (5-fluorouracil). The results showed that the hydrogel with higher physical cross-linking degree exhibited a higher drug loading efficiency and drug release percentage. |
---|---|
ISSN: | 0021-8561 1520-5118 |
DOI: | 10.1021/acs.jafc.7b04210 |