Loading…
Kinase-Inactive Glycogen Synthase Kinase 3β Promotes Wnt Signaling and Mammary Tumorigenesis
Recent studies have implicated ectopic activation of the Wnt pathway in many human cancers, including breast cancer. β-catenin is a critical coactivator in this signaling pathway and is regulated in a complex fashion by phosphorylation, degradation, and nuclear translocation. Glycogen synthase kinas...
Saved in:
Published in: | Cancer research (Chicago, Ill.) Ill.), 2005-07, Vol.65 (13), p.5792-5801 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent studies have implicated ectopic activation of the Wnt pathway in many human cancers, including breast cancer. β-catenin is a critical coactivator in this signaling pathway and is regulated in a complex fashion by phosphorylation, degradation, and nuclear translocation. Glycogen synthase kinase 3β (GSK3β) phosphorylation of the NH2-terminal domain of β-catenin targets it for ubiquitination and proteosomal degradation. We hypothesized that expression of kinase-inactive GSK3β (KI-GSK3β) in mammary glands would function in a dominant-negative fashion by antagonizing the endogenous activity of GSK3β and promoting breast cancer development. Consistent with this, we find that KI-GSK3β stabilizes β-catenin expression, catalyzes its localization to the nucleus, and up-regulates the downstream target gene, cyclin D1, in vitro. In vivo, transgenic mice overexpressing the KI-GSK3β under the control of the mouse mammary tumor virus-long terminal repeat develop mammary tumors with overexpression of β-catenin and cyclin D1. Thus, antagonism of GSK3β activity is oncogenic in the mammary epithelium; mutation or pharmacologic down-regulation of GSK3β could promote mammary tumors. |
---|---|
ISSN: | 0008-5472 1538-7445 |
DOI: | 10.1158/0008-5472.CAN-05-1021 |