Loading…

Melatonin protects mouse spermatogonial stem cells against hexavalent chromium-induced apoptosis and epigenetic histone modification

Given the potential biological functions of spermatogonial stem cells (SSCs) in spermatogenesis and in delivering parental genetic information to the next generation, how these cells respond to environmental toxins and carcinogens should be investigated. We examined the toxic effect of hexavalent ch...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology and applied pharmacology 2018-02, Vol.340, p.30-38
Main Authors: Lv, Yinghua, Zhang, Pengfei, Guo, Jiayin, Zhu, Zhendong, Li, Xueliang, Xu, Dazhong, Zeng, Wenxian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Given the potential biological functions of spermatogonial stem cells (SSCs) in spermatogenesis and in delivering parental genetic information to the next generation, how these cells respond to environmental toxins and carcinogens should be investigated. We examined the toxic effect of hexavalent chromium (Cr(VI)) on global histone modifications and apoptotic signaling pathways in SSCs. We determined the effect of melatonin, one of the most powerful endogenous free radical scavengers and wide-spectrum antioxidants, in protecting SSCs from Cr(VI)-induced apoptosis and global histone modification by Western blot analysis. In addition, we examined the in vivo effect of melatonin on Cr(VI)-induced histological changes of seminiferous tubules in mouse testes. We also evaluated the fertility of male mice by monitoring litter size following intraperitoneal injection of these chemicals. Our study demonstrated the Cr(VI)-induced global increases in H3K9me3 and H3K27me3 and activated the apoptotic signaling pathway. Pretreatment of SSCs with melatonin alleviated Cr(VI)-induced apoptosis and the global increase of H3K9me3. Exposure to melatonin also attenuated the Cr(VI)-induced increase of the abundance of histone methyltransferase ESET. Furthermore, exogenous administration of melatonin protected mice against Cr(VI)-induced changes in testicular histology and germ cell apoptosis, which helped maintain normal spermatogenesis and male fertility. Our study revealed a potential new therapeutic approach for male reproductive injury caused by Cr(VI). •Melatonin alleviated Cr(VI)-induced SSCs apoptosis in vitro.•Melatonin alleviated Cr(VI)-induced testicular histological damage in vivo.•Melatonin alleviated Cr(VI)-increased ESET expression and H3K9me3 level.
ISSN:0041-008X
1096-0333
DOI:10.1016/j.taap.2017.12.017