Loading…

One- plus Two-hybrid System, a Novel Yeast Genetic Selection for Specific Missense Mutations Disrupting Protein/Protein Interactions

To facilitate analysis of protein/protein interaction interfaces, we devised a novel yeast genetic screening method, named the “one- plus two-hybrid system,” for the efficient selection of missense mutations that specifically disrupt known protein/protein interactions. This system modifies the stand...

Full description

Saved in:
Bibliographic Details
Published in:Molecular & cellular proteomics 2007-10, Vol.6 (10), p.1727-1740
Main Authors: Kim, Ji Young, Park, Ok Gu, Lee, Jae Woon, Lee, Young Chul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To facilitate analysis of protein/protein interaction interfaces, we devised a novel yeast genetic screening method, named the “one- plus two-hybrid system,” for the efficient selection of missense mutations that specifically disrupt known protein/protein interactions. This system modifies the standard yeast two-hybrid system to allow the operation of dual reporter systems within the same cell. The one-hybrid system is first used to select the intact interacting partner (prey), resulting in the positive selection of informative missense mutants from a large library of randomly generated mutant alleles. Then in a second screening step, interaction-defective prey mutants for a given protein are selected using the two-hybrid reporter system among the isolated missense mutants. We used this method to characterize the interactions between unliganded nuclear receptors (NRs) and the conserved motif within the bipartite NR interaction domains (IDs) of the NR corepressor (N-CoR) and identified the specific residues of N-CoR-IDs required either generally for optimal NR binding or to interact with a particular NR. This efficient and rapid method should allow us to quickly analyze a large number of interaction interfaces.
ISSN:1535-9476
1535-9484
DOI:10.1074/mcp.M700079-MCP200