Loading…

Evaluation of gilthead sea bream, Sparus aurata, sperm quality after cryopreservation in 5ml macrotubes

Cryopreservation produces several types of damage in spermatozoa, leading to fertility impairment. The reduction arises both from a lower viability post-thaw and from sublethal dysfunctions in some of the surviving cells. In the present study, we have analysed the effect of cryopreservation in 5 ml...

Full description

Saved in:
Bibliographic Details
Published in:Cryobiology 2005-06, Vol.50 (3), p.273-284
Main Authors: Cabrita, E, Robles, V, Cunado, S, Wallace, J C, Sarasquete, C, Herraez, M P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cryopreservation produces several types of damage in spermatozoa, leading to fertility impairment. The reduction arises both from a lower viability post-thaw and from sublethal dysfunctions in some of the surviving cells. In the present study, we have analysed the effect of cryopreservation in 5 ml macrotubes on the quality of post-thawed gilthead sea bream sperm. Several standard sperm quality parameters were determined: pH and osmolarity of seminal plasma, sperm concentration, and motility. An exhaustive determination of sperm quality before and after cryopreservation was investigated. Several parameters related with spermatozoal status were determined: ATP content, plasma membrane integrity and functionality, mitochondrial functionality, and sperm fertility. Our results demonstrated that gilthead sea bream spermatozoa suffer several types of damage after freezing/thawing. The percentage of viable cells slightly decreased after cryopreservation, however plasma membrane was affected by cryopreservation, since cells could not resist the hyperosmotic shock. Mitochondrial status was affected by cryopreservation since there was a decrease in the parameters of sperm motility, ATP content (3.17nmol ATP/10 super(5) spermatozoa to 1.7nmol ATP/10 super(5) spermatozoa in 1:20 frozen samples) and an increase of the percentage of cells with mitochondrial depolarized membranes (11% for fresh and 27% for 1:20 frozen samples). Fertility rate was similar either using fresh or frozen/thawed sperm (77 and 75% hatched larvae, respectively).
ISSN:0011-2240
DOI:10.1016/j.cryobiol.2005.02.005