Loading…

Variation assessment of deformable registration in stereotactic radiosurgery

The regular functions of CT-MRI registration include delineation of targets and organs-at-risk (OARs) in radiosurgery planning. The question of whether deformable image registration (DIR) could be applied to stereotactic radiosurgery (SRS) in its place remains a subject of debate. This study collect...

Full description

Saved in:
Bibliographic Details
Published in:Radiography (London, England. 1995) England. 1995), 2018-02, Vol.24 (1), p.72-78
Main Authors: Chang, C.-S., Shih, R., Hwang, J.-M., Chuang, K.-S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The regular functions of CT-MRI registration include delineation of targets and organs-at-risk (OARs) in radiosurgery planning. The question of whether deformable image registration (DIR) could be applied to stereotactic radiosurgery (SRS) in its place remains a subject of debate. This study collected data regarding 16 patients who had undergone single-fraction SRS treatment. All lesions were located close to the brainstem. CT and MRI two image sets were registered by both rigid image registration (RIR) and DIR algorithms. The contours of the OARs were drawn individually on the rigid and deformable CT-MRI image sets by qualified radiation oncologists and dosimetrists. The evaluation metrics included volume overlapping (VO), Dice similarity coefficient (DSC), and dose. The modified demons deformable algorithm (VARIAN SmartAdapt) was used for evaluation in this study. The mean range of VO for OARs was 0.84 ± 0.08, and DSC was 0.82 ± 0.07. The maximum average volume difference was at normal brain (17.18 ± 14.48 cm3) and the second highest was at brainstem (2.26 cm3 ± 1.18). Pearson correlation testing showed that all DIRs' OAR volumes were linearly and significantly correlated with RIRs' volume (0.679–0.992, two tailed, P 
ISSN:1078-8174
1532-2831
DOI:10.1016/j.radi.2017.06.006