Loading…

Structure elucidation of the O-specific polysaccharide by NMR spectroscopy and selective cleavage and genetic characterization of the O-antigen of Escherichia albertii O5

The O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Escherichia albertii O5 (strain T150248) and studied by sugar analysis, selective cleavages of glycosidic linkages, and 1D and 2D 1H and 13C NMR spectroscopy. Partial solvolysis with anh (anh...

Full description

Saved in:
Bibliographic Details
Published in:Carbohydrate research 2018-03, Vol.457, p.25-31
Main Authors: Naumenko, Olesya I., Zheng, Han, Wang, Jianping, Senchenkova, Sof'ya N., Wang, Hong, Shashkov, Alexander S., Chizhov, Alexander O., Li, Qun, Knirel, Yuriy A., Xiong, Yanwen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The O-specific polysaccharide (O-antigen) was obtained by mild acid degradation of the lipopolysaccharide of Escherichia albertii O5 (strain T150248) and studied by sugar analysis, selective cleavages of glycosidic linkages, and 1D and 2D 1H and 13C NMR spectroscopy. Partial solvolysis with anh (anhydrous) CF3CO2H and hydrolysis with 0.05 M CF3CO2H cleaved predominantly the glycosidic linkage of β-GalpNAc or β-Galf, respectively, whereas the linkages of α-GlcpNAc and β-Galp were stable. Mixtures of the corresponding tri- and tetra-saccharides thus obtained were studied by NMR spectroscopy and high-resolution ESI MS. The following new structure was established for the tetrasaccharide repeat (O-unit) of the O-polysaccharide: →4)-α-d-GlcpNAc-(1 → 4)-β-d-Galp6Ac-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc-(1→where the degree of O-acetylation of d-Galp is ∼70%. The O-polysaccharide studied has a β-d-Galp-(1 → 6)-β-d-Galf-(1 → 3)-β-d-GalpNAc trisaccharide fragment in common with the O-polysaccharides of E. albertii O7, Escherichia coli O124 and O164, and Shigella dysenteriae type 3 studied earlier. The orf5-7 in the O-antigen gene cluster of E. albertii O5 are 47%, 78%, and 75% identical on the amino acid level to genes for predicted enzymes of E. albertii O7, including Galp-transferase wfeS, UDP-d-Galp mutase glf, and Galf-transferase wfeT, respectively, which are putatively involved with the synthesis of the shared trisaccharide fragment of the O-polysaccharides. The occurrence upstream of the O-antigen gene cluster of a 4-epimerase gene gnu for conversion of undecaprenyl diphosphate-linked d-GlcNAc (UndPP-d-GlcNAc) into UndPP-d-GalNAc indicates that d-GalNAc is the first monosaccharide of the O-unit, and hence the O-units are interlinked in the O-polysaccharide of E. albertii O5 by the β-d-GalpNAc-(1 → 4)-α-d-GlcpNAc linkage. [Display omitted] •An O-specific polysaccharide was isolated from Escherichia albertii serotype O5.•Structure of polysaccharide was obtained by chemical analyses and NMR spectroscopy.•CF3CO2H solvolysis and acid hydrolysis cleaved mainly different glycosidic linkages.•Gene cluster for the biosynthesis of the O-polysaccharide matched its structure.
ISSN:0008-6215
1873-426X
DOI:10.1016/j.carres.2017.12.010