Loading…

Recycling of neodymium enhanced by functionalized magnetic ferrite

This study systematically evaluates Neodymium (Nd) recovery from actual seawaters and wastewater using functionalized magnetic ferrite (3-mercaptopropionic acid-tetraethyl orthosilicate ferrite, MPA-TEOS-ferrite). The recovery of Nd by MPA-TEOS-ferrite displayed an L-shaped nonlinear isotherm, sugge...

Full description

Saved in:
Bibliographic Details
Published in:Environmental technology 2019-05, Vol.40 (12), p.1592-1604
Main Authors: Tu, Yao-Jen, You, Chen-Feng, Lo, Sheng-Chung, Chan, Ting-Shan, Chung, Chuan-Hsiung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study systematically evaluates Neodymium (Nd) recovery from actual seawaters and wastewater using functionalized magnetic ferrite (3-mercaptopropionic acid-tetraethyl orthosilicate ferrite, MPA-TEOS-ferrite). The recovery of Nd by MPA-TEOS-ferrite displayed an L-shaped nonlinear isotherm, suggesting limiting binding sites on the adsorbent surface. At room temperature, a significant recovery of Nd by MPA-TEOS-ferrite increased from 8.99% to 99.99% with increasing pH (2.89-8.16) and an enhanced maxima Nd recovery capacity was observed on MPA-TEOS-ferrite (25.58 mg/g) when compared with pure ferrite (22.27 mg/g). The L3-edge X-ray absorption near-edge structure (XANES) spectra for the adsorbents collected after Nd recovery indicated that Nd(III) was still the predominant oxidation species on the surface of MPA-TEOS-ferrite. Only slightly change in the oxidation state or electronic structure around the Nd ions could be found during the adsorption process. Importantly, no significant change was found on Nd recovery while the NaCl ionic strength increased from 0.01 to 0.5 N. Furthermore, the results also displayed that the synthesized MPA-TEOS-ferrite has a great potential in efficient and rapid recovery of Nd from seawaters and wastewater.
ISSN:0959-3330
1479-487X
DOI:10.1080/09593330.2018.1426643