Loading…

Structural Basis of Heterochromatin Formation by Human HP1

Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), i...

Full description

Saved in:
Bibliographic Details
Published in:Molecular cell 2018-02, Vol.69 (3), p.385-397.e8
Main Authors: Machida, Shinichi, Takizawa, Yoshimasa, Ishimaru, Masakazu, Sugita, Yukihiko, Sekine, Satoshi, Nakayama, Jun-ichi, Wolf, Matthias, Kurumizaka, Hitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663
cites cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663
container_end_page 397.e8
container_issue 3
container_start_page 385
container_title Molecular cell
container_volume 69
creator Machida, Shinichi
Takizawa, Yoshimasa
Ishimaru, Masakazu
Sugita, Yukihiko
Sekine, Satoshi
Nakayama, Jun-ichi
Wolf, Matthias
Kurumizaka, Hitoshi
description Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.
doi_str_mv 10.1016/j.molcel.2017.12.011
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989582736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517309395</els_id><sourcerecordid>1989582736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</originalsourceid><addsrcrecordid>eNp9kEFLxDAUhIMo7rr6D0R69NKal6ZJ6kHQxXWFBQX1HNI0wS5tsyatsP_elq4ePb05zLxhPoQuASeAgd1sk8bV2tQJwcATIAkGOEJzwDmPKTB6fNCEs2yGzkLYYgw0E_kpmpE8TZngbI5u3zrf6673qo4eVKhC5Gy0Np3xTn9616iuaqOV86NwbVTso3XfqDZav8I5OrGqDubicBfoY_X4vlzHm5en5-X9JtYZiC5OdaoFZoJpsLywVqmSWk5zTjOrSoZViglYTXhuClLSUilR2CLDRmQZo4ylC3Q9_d1599Wb0MmmCsPwWrXG9UFCLvJMEJ6OVjpZtXcheGPlzleN8nsJWI7U5FZO1ORITQKRA7UhdnVo6IvGlH-hX0yD4W4ymGHnd2W8DLoyrTZl5Y3uZOmq_xt-ACHhfyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989582736</pqid></control><display><type>article</type><title>Structural Basis of Heterochromatin Formation by Human HP1</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</creator><creatorcontrib>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</creatorcontrib><description>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.12.011</identifier><identifier>PMID: 29336876</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACF ; chromatin ; Chromatin - metabolism ; Chromatin Assembly and Disassembly - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; cryo-EM ; Cryoelectron Microscopy - methods ; DNA - metabolism ; epigenetics ; H3K9me3 ; heterochromatin ; Heterochromatin - metabolism ; histone ; Histones - metabolism ; HP1 ; Humans ; Jumonji Domain-Containing Histone Demethylases - metabolism ; Methylation ; nucleosome ; Nucleosomes - metabolism ; Protein Binding ; Structure-Activity Relationship ; Transcription Factors - metabolism</subject><ispartof>Molecular cell, 2018-02, Vol.69 (3), p.385-397.e8</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</citedby><cites>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29336876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machida, Shinichi</creatorcontrib><creatorcontrib>Takizawa, Yoshimasa</creatorcontrib><creatorcontrib>Ishimaru, Masakazu</creatorcontrib><creatorcontrib>Sugita, Yukihiko</creatorcontrib><creatorcontrib>Sekine, Satoshi</creatorcontrib><creatorcontrib>Nakayama, Jun-ichi</creatorcontrib><creatorcontrib>Wolf, Matthias</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><title>Structural Basis of Heterochromatin Formation by Human HP1</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</description><subject>ACF</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy - methods</subject><subject>DNA - metabolism</subject><subject>epigenetics</subject><subject>H3K9me3</subject><subject>heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>histone</subject><subject>Histones - metabolism</subject><subject>HP1</subject><subject>Humans</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>Methylation</subject><subject>nucleosome</subject><subject>Nucleosomes - metabolism</subject><subject>Protein Binding</subject><subject>Structure-Activity Relationship</subject><subject>Transcription Factors - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAUhIMo7rr6D0R69NKal6ZJ6kHQxXWFBQX1HNI0wS5tsyatsP_elq4ePb05zLxhPoQuASeAgd1sk8bV2tQJwcATIAkGOEJzwDmPKTB6fNCEs2yGzkLYYgw0E_kpmpE8TZngbI5u3zrf6673qo4eVKhC5Gy0Np3xTn9616iuaqOV86NwbVTso3XfqDZav8I5OrGqDubicBfoY_X4vlzHm5en5-X9JtYZiC5OdaoFZoJpsLywVqmSWk5zTjOrSoZViglYTXhuClLSUilR2CLDRmQZo4ylC3Q9_d1599Wb0MmmCsPwWrXG9UFCLvJMEJ6OVjpZtXcheGPlzleN8nsJWI7U5FZO1ORITQKRA7UhdnVo6IvGlH-hX0yD4W4ymGHnd2W8DLoyrTZl5Y3uZOmq_xt-ACHhfyw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Machida, Shinichi</creator><creator>Takizawa, Yoshimasa</creator><creator>Ishimaru, Masakazu</creator><creator>Sugita, Yukihiko</creator><creator>Sekine, Satoshi</creator><creator>Nakayama, Jun-ichi</creator><creator>Wolf, Matthias</creator><creator>Kurumizaka, Hitoshi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180201</creationdate><title>Structural Basis of Heterochromatin Formation by Human HP1</title><author>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACF</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy - methods</topic><topic>DNA - metabolism</topic><topic>epigenetics</topic><topic>H3K9me3</topic><topic>heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>histone</topic><topic>Histones - metabolism</topic><topic>HP1</topic><topic>Humans</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>Methylation</topic><topic>nucleosome</topic><topic>Nucleosomes - metabolism</topic><topic>Protein Binding</topic><topic>Structure-Activity Relationship</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machida, Shinichi</creatorcontrib><creatorcontrib>Takizawa, Yoshimasa</creatorcontrib><creatorcontrib>Ishimaru, Masakazu</creatorcontrib><creatorcontrib>Sugita, Yukihiko</creatorcontrib><creatorcontrib>Sekine, Satoshi</creatorcontrib><creatorcontrib>Nakayama, Jun-ichi</creatorcontrib><creatorcontrib>Wolf, Matthias</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machida, Shinichi</au><au>Takizawa, Yoshimasa</au><au>Ishimaru, Masakazu</au><au>Sugita, Yukihiko</au><au>Sekine, Satoshi</au><au>Nakayama, Jun-ichi</au><au>Wolf, Matthias</au><au>Kurumizaka, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis of Heterochromatin Formation by Human HP1</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>69</volume><issue>3</issue><spage>385</spage><epage>397.e8</epage><pages>385-397.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin. [Display omitted] •The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1 HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29336876</pmid><doi>10.1016/j.molcel.2017.12.011</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1097-2765
ispartof Molecular cell, 2018-02, Vol.69 (3), p.385-397.e8
issn 1097-2765
1097-4164
language eng
recordid cdi_proquest_miscellaneous_1989582736
source BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS
subjects ACF
chromatin
Chromatin - metabolism
Chromatin Assembly and Disassembly - genetics
Chromosomal Proteins, Non-Histone - genetics
Chromosomal Proteins, Non-Histone - metabolism
cryo-EM
Cryoelectron Microscopy - methods
DNA - metabolism
epigenetics
H3K9me3
heterochromatin
Heterochromatin - metabolism
histone
Histones - metabolism
HP1
Humans
Jumonji Domain-Containing Histone Demethylases - metabolism
Methylation
nucleosome
Nucleosomes - metabolism
Protein Binding
Structure-Activity Relationship
Transcription Factors - metabolism
title Structural Basis of Heterochromatin Formation by Human HP1
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20of%20Heterochromatin%20Formation%20by%20Human%20HP1&rft.jtitle=Molecular%20cell&rft.au=Machida,%20Shinichi&rft.date=2018-02-01&rft.volume=69&rft.issue=3&rft.spage=385&rft.epage=397.e8&rft.pages=385-397.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.12.011&rft_dat=%3Cproquest_cross%3E1989582736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989582736&rft_id=info:pmid/29336876&rfr_iscdi=true