Loading…
Structural Basis of Heterochromatin Formation by Human HP1
Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), i...
Saved in:
Published in: | Molecular cell 2018-02, Vol.69 (3), p.385-397.e8 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663 |
container_end_page | 397.e8 |
container_issue | 3 |
container_start_page | 385 |
container_title | Molecular cell |
container_volume | 69 |
creator | Machida, Shinichi Takizawa, Yoshimasa Ishimaru, Masakazu Sugita, Yukihiko Sekine, Satoshi Nakayama, Jun-ichi Wolf, Matthias Kurumizaka, Hitoshi |
description | Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique. |
doi_str_mv | 10.1016/j.molcel.2017.12.011 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989582736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1097276517309395</els_id><sourcerecordid>1989582736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</originalsourceid><addsrcrecordid>eNp9kEFLxDAUhIMo7rr6D0R69NKal6ZJ6kHQxXWFBQX1HNI0wS5tsyatsP_elq4ePb05zLxhPoQuASeAgd1sk8bV2tQJwcATIAkGOEJzwDmPKTB6fNCEs2yGzkLYYgw0E_kpmpE8TZngbI5u3zrf6673qo4eVKhC5Gy0Np3xTn9616iuaqOV86NwbVTso3XfqDZav8I5OrGqDubicBfoY_X4vlzHm5en5-X9JtYZiC5OdaoFZoJpsLywVqmSWk5zTjOrSoZViglYTXhuClLSUilR2CLDRmQZo4ylC3Q9_d1599Wb0MmmCsPwWrXG9UFCLvJMEJ6OVjpZtXcheGPlzleN8nsJWI7U5FZO1ORITQKRA7UhdnVo6IvGlH-hX0yD4W4ymGHnd2W8DLoyrTZl5Y3uZOmq_xt-ACHhfyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989582736</pqid></control><display><type>article</type><title>Structural Basis of Heterochromatin Formation by Human HP1</title><source>BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS</source><creator>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</creator><creatorcontrib>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</creatorcontrib><description>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</description><identifier>ISSN: 1097-2765</identifier><identifier>EISSN: 1097-4164</identifier><identifier>DOI: 10.1016/j.molcel.2017.12.011</identifier><identifier>PMID: 29336876</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACF ; chromatin ; Chromatin - metabolism ; Chromatin Assembly and Disassembly - genetics ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - metabolism ; cryo-EM ; Cryoelectron Microscopy - methods ; DNA - metabolism ; epigenetics ; H3K9me3 ; heterochromatin ; Heterochromatin - metabolism ; histone ; Histones - metabolism ; HP1 ; Humans ; Jumonji Domain-Containing Histone Demethylases - metabolism ; Methylation ; nucleosome ; Nucleosomes - metabolism ; Protein Binding ; Structure-Activity Relationship ; Transcription Factors - metabolism</subject><ispartof>Molecular cell, 2018-02, Vol.69 (3), p.385-397.e8</ispartof><rights>2017 Elsevier Inc.</rights><rights>Copyright © 2017 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</citedby><cites>FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29336876$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Machida, Shinichi</creatorcontrib><creatorcontrib>Takizawa, Yoshimasa</creatorcontrib><creatorcontrib>Ishimaru, Masakazu</creatorcontrib><creatorcontrib>Sugita, Yukihiko</creatorcontrib><creatorcontrib>Sekine, Satoshi</creatorcontrib><creatorcontrib>Nakayama, Jun-ichi</creatorcontrib><creatorcontrib>Wolf, Matthias</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><title>Structural Basis of Heterochromatin Formation by Human HP1</title><title>Molecular cell</title><addtitle>Mol Cell</addtitle><description>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</description><subject>ACF</subject><subject>chromatin</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Assembly and Disassembly - genetics</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - metabolism</subject><subject>cryo-EM</subject><subject>Cryoelectron Microscopy - methods</subject><subject>DNA - metabolism</subject><subject>epigenetics</subject><subject>H3K9me3</subject><subject>heterochromatin</subject><subject>Heterochromatin - metabolism</subject><subject>histone</subject><subject>Histones - metabolism</subject><subject>HP1</subject><subject>Humans</subject><subject>Jumonji Domain-Containing Histone Demethylases - metabolism</subject><subject>Methylation</subject><subject>nucleosome</subject><subject>Nucleosomes - metabolism</subject><subject>Protein Binding</subject><subject>Structure-Activity Relationship</subject><subject>Transcription Factors - metabolism</subject><issn>1097-2765</issn><issn>1097-4164</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAUhIMo7rr6D0R69NKal6ZJ6kHQxXWFBQX1HNI0wS5tsyatsP_elq4ePb05zLxhPoQuASeAgd1sk8bV2tQJwcATIAkGOEJzwDmPKTB6fNCEs2yGzkLYYgw0E_kpmpE8TZngbI5u3zrf6673qo4eVKhC5Gy0Np3xTn9616iuaqOV86NwbVTso3XfqDZav8I5OrGqDubicBfoY_X4vlzHm5en5-X9JtYZiC5OdaoFZoJpsLywVqmSWk5zTjOrSoZViglYTXhuClLSUilR2CLDRmQZo4ylC3Q9_d1599Wb0MmmCsPwWrXG9UFCLvJMEJ6OVjpZtXcheGPlzleN8nsJWI7U5FZO1ORITQKRA7UhdnVo6IvGlH-hX0yD4W4ymGHnd2W8DLoyrTZl5Y3uZOmq_xt-ACHhfyw</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Machida, Shinichi</creator><creator>Takizawa, Yoshimasa</creator><creator>Ishimaru, Masakazu</creator><creator>Sugita, Yukihiko</creator><creator>Sekine, Satoshi</creator><creator>Nakayama, Jun-ichi</creator><creator>Wolf, Matthias</creator><creator>Kurumizaka, Hitoshi</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180201</creationdate><title>Structural Basis of Heterochromatin Formation by Human HP1</title><author>Machida, Shinichi ; Takizawa, Yoshimasa ; Ishimaru, Masakazu ; Sugita, Yukihiko ; Sekine, Satoshi ; Nakayama, Jun-ichi ; Wolf, Matthias ; Kurumizaka, Hitoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>ACF</topic><topic>chromatin</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Assembly and Disassembly - genetics</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - metabolism</topic><topic>cryo-EM</topic><topic>Cryoelectron Microscopy - methods</topic><topic>DNA - metabolism</topic><topic>epigenetics</topic><topic>H3K9me3</topic><topic>heterochromatin</topic><topic>Heterochromatin - metabolism</topic><topic>histone</topic><topic>Histones - metabolism</topic><topic>HP1</topic><topic>Humans</topic><topic>Jumonji Domain-Containing Histone Demethylases - metabolism</topic><topic>Methylation</topic><topic>nucleosome</topic><topic>Nucleosomes - metabolism</topic><topic>Protein Binding</topic><topic>Structure-Activity Relationship</topic><topic>Transcription Factors - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Machida, Shinichi</creatorcontrib><creatorcontrib>Takizawa, Yoshimasa</creatorcontrib><creatorcontrib>Ishimaru, Masakazu</creatorcontrib><creatorcontrib>Sugita, Yukihiko</creatorcontrib><creatorcontrib>Sekine, Satoshi</creatorcontrib><creatorcontrib>Nakayama, Jun-ichi</creatorcontrib><creatorcontrib>Wolf, Matthias</creatorcontrib><creatorcontrib>Kurumizaka, Hitoshi</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Machida, Shinichi</au><au>Takizawa, Yoshimasa</au><au>Ishimaru, Masakazu</au><au>Sugita, Yukihiko</au><au>Sekine, Satoshi</au><au>Nakayama, Jun-ichi</au><au>Wolf, Matthias</au><au>Kurumizaka, Hitoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Basis of Heterochromatin Formation by Human HP1</atitle><jtitle>Molecular cell</jtitle><addtitle>Mol Cell</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>69</volume><issue>3</issue><spage>385</spage><epage>397.e8</epage><pages>385-397.e8</pages><issn>1097-2765</issn><eissn>1097-4164</eissn><abstract>Heterochromatin plays important roles in transcriptional silencing and genome maintenance by the formation of condensed chromatin structures, which determine the epigenetic status of eukaryotic cells. The trimethylation of histone H3 lysine 9 (H3K9me3), a target of heterochromatin protein 1 (HP1), is a hallmark of heterochromatin formation. However, the mechanism by which HP1 folds chromatin-containing H3K9me3 into a higher-order structure has not been elucidated. Here we report the three-dimensional structure of the H3K9me3-containing dinucleosomes complexed with human HP1α, HP1β, and HP1γ, determined by cryogenic electron microscopy with a Volta phase plate. In the structures, two H3K9me3 nucleosomes are bridged by a symmetric HP1 dimer. Surprisingly, the linker DNA between the nucleosomes does not directly interact with HP1, thus allowing nucleosome remodeling by the ATP-utilizing chromatin assembly and remodeling factor (ACF). The structure depicts the fundamental architecture of heterochromatin.
[Display omitted]
•The HP1-H3K9me3 dinucleosome complex structure determined by the cryo-EM method•HP1 forms a symmetric dimer and bridges two H3K9me3 nucleosomes in the complex•The HP1 chromoshadow domain dimer exists in an accessible location in the complex•The linker DNA between nucleosomes does not directly interact with HP1
HP1 and H3 Lys9 trimethylations (H3K9me3) are hallmarks of heterochromatin, and they play pivotal roles in the epigenetic propagation of heterochromatin. Machida et al. describe the structure of the H3K9me3-containing dinucleosome complexed with human HP1, obtained by the cryo-EM technique.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29336876</pmid><doi>10.1016/j.molcel.2017.12.011</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1097-2765 |
ispartof | Molecular cell, 2018-02, Vol.69 (3), p.385-397.e8 |
issn | 1097-2765 1097-4164 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989582736 |
source | BACON - Elsevier - GLOBAL_SCIENCEDIRECT-OPENACCESS |
subjects | ACF chromatin Chromatin - metabolism Chromatin Assembly and Disassembly - genetics Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - metabolism cryo-EM Cryoelectron Microscopy - methods DNA - metabolism epigenetics H3K9me3 heterochromatin Heterochromatin - metabolism histone Histones - metabolism HP1 Humans Jumonji Domain-Containing Histone Demethylases - metabolism Methylation nucleosome Nucleosomes - metabolism Protein Binding Structure-Activity Relationship Transcription Factors - metabolism |
title | Structural Basis of Heterochromatin Formation by Human HP1 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-23T23%3A34%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Basis%20of%20Heterochromatin%20Formation%20by%20Human%20HP1&rft.jtitle=Molecular%20cell&rft.au=Machida,%20Shinichi&rft.date=2018-02-01&rft.volume=69&rft.issue=3&rft.spage=385&rft.epage=397.e8&rft.pages=385-397.e8&rft.issn=1097-2765&rft.eissn=1097-4164&rft_id=info:doi/10.1016/j.molcel.2017.12.011&rft_dat=%3Cproquest_cross%3E1989582736%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-3c3c80686c1f7bffaad4f749745fad60a3021fc279eb2d4daa8bfb50e85564663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989582736&rft_id=info:pmid/29336876&rfr_iscdi=true |