Loading…
Co(OH)2 Nanoparticle‐Encapsulating Conductive Nanowires Array: Room‐Temperature Electrochemical Preparation for High‐Performance Water Oxidation Electrocatalysis
It is highly desired but still remains challenging to design and develop a Co‐based nanoparticle‐encapsulated conductive nanoarray at room temperature for high‐performance water oxidation electrocatalysis. Here, it is reported that room‐temperature anodization of a Co(TCNQ)2 (TCNQ = tetracyanoquinod...
Saved in:
Published in: | Advanced materials (Weinheim) 2018-03, Vol.30 (9), p.n/a |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is highly desired but still remains challenging to design and develop a Co‐based nanoparticle‐encapsulated conductive nanoarray at room temperature for high‐performance water oxidation electrocatalysis. Here, it is reported that room‐temperature anodization of a Co(TCNQ)2 (TCNQ = tetracyanoquinodimethane) nanowire array on copper foam at alkaline pH leads to in situ electrochemcial oxidation of TCNQ− into water‐insoluable TCNQ nanoarray embedding Co(OH)2 nanoparticles. Such Co(OH)2‐TCNQ/CF shows superior catalytic activity for water oxidation and demands only a low overpotential of 276 mV to drive a geometrical current density of 25 mA cm−2 in 1.0 m KOH. Notably, it also demonstrates strong long‐term electrochemical durability with its activity being retrained for at least 25 h, a high turnover frequency of 0.97 s−1 at an overpotential of 450 mV and 100% Faradic efficiency. This study provides an exciting new method for the rational design and development of a conductive TCNQ‐based nanoarray as an interesting 3D material for advanced electrochemical applications.
A Co(OH)2 nanoparticle‐encapsulating conductive tetracyanoquinodimethane (TCNQ) nanowire array on copper foam is prepared using an in situ electrochemical oxidation method to form a water‐insoluable conductive TCNQ nanoarray. This array effectively entraps Co(OH)2 nanoparticles at alkaline pH. Such Co(OH)2‐TCNQ/CF requires an overpotential as low as 276 mV to drive a geometrical current density of 25 mA cm−2 in 1.0 M KOH, with strong long‐term electrochemical durability. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201705366 |