Loading…
Control of accuracy in the Wang-Landau algorithm
The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy o...
Saved in:
Published in: | Physical review. E 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3 |
---|---|
cites | cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3 |
container_end_page | 043307 |
container_issue | 4-1 |
container_start_page | 043307 |
container_title | Physical review. E |
container_volume | 96 |
creator | Barash, L Yu Fadeeva, M A Shchur, L N |
description | The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model. |
doi_str_mv | 10.1103/PhysRevE.96.043307 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989597882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989597882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMottT-ARcySzdTv7yTpZRahYIiisuQZDLtyDxqMiP031vpY3Xv4p67OAjdYphhDPThbbNL7-F3MdNiBoxSkBdoTJiEHIDTy3NnfISmKX0DABagJSbXaEQ0ZVIAGSOYd20fuzrrysx6P0Trd1nVZv0mZF-2Xecr2xZ2yGy97mLVb5obdFXaOoXpMSfo82nxMX_OV6_Ll_njKveUkz4XIJh3qiA8MM6to4AxFdyRIjgtFGEuWJCYU-AFYdhKR7EqS8cZVdqVlk7Q_eF3G7ufIaTeNFXyoa5tG7ohGayV5loqRfZTcpj62KUUQ2m2sWps3BkM5l-WOckyWpiDrD10d_wfXBOKM3JSQ_8AKs9kqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989597882</pqid></control><display><type>article</type><title>Control of accuracy in the Wang-Landau algorithm</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</creator><creatorcontrib>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</creatorcontrib><description>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.96.043307</identifier><identifier>PMID: 29347602</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</citedby><cites>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29347602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barash, L Yu</creatorcontrib><creatorcontrib>Fadeeva, M A</creatorcontrib><creatorcontrib>Shchur, L N</creatorcontrib><title>Control of accuracy in the Wang-Landau algorithm</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMottT-ARcySzdTv7yTpZRahYIiisuQZDLtyDxqMiP031vpY3Xv4p67OAjdYphhDPThbbNL7-F3MdNiBoxSkBdoTJiEHIDTy3NnfISmKX0DABagJSbXaEQ0ZVIAGSOYd20fuzrrysx6P0Trd1nVZv0mZF-2Xecr2xZ2yGy97mLVb5obdFXaOoXpMSfo82nxMX_OV6_Ll_njKveUkz4XIJh3qiA8MM6to4AxFdyRIjgtFGEuWJCYU-AFYdhKR7EqS8cZVdqVlk7Q_eF3G7ufIaTeNFXyoa5tG7ohGayV5loqRfZTcpj62KUUQ2m2sWps3BkM5l-WOckyWpiDrD10d_wfXBOKM3JSQ_8AKs9kqw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Barash, L Yu</creator><creator>Fadeeva, M A</creator><creator>Shchur, L N</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Control of accuracy in the Wang-Landau algorithm</title><author>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barash, L Yu</creatorcontrib><creatorcontrib>Fadeeva, M A</creatorcontrib><creatorcontrib>Shchur, L N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barash, L Yu</au><au>Fadeeva, M A</au><au>Shchur, L N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of accuracy in the Wang-Landau algorithm</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-10</date><risdate>2017</risdate><volume>96</volume><issue>4-1</issue><spage>043307</spage><epage>043307</epage><pages>043307-043307</pages><artnum>043307</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</abstract><cop>United States</cop><pmid>29347602</pmid><doi>10.1103/PhysRevE.96.043307</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0045 |
ispartof | Physical review. E, 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307 |
issn | 2470-0045 2470-0053 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989597882 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Control of accuracy in the Wang-Landau algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20accuracy%20in%20the%20Wang-Landau%20algorithm&rft.jtitle=Physical%20review.%20E&rft.au=Barash,%20L%20Yu&rft.date=2017-10&rft.volume=96&rft.issue=4-1&rft.spage=043307&rft.epage=043307&rft.pages=043307-043307&rft.artnum=043307&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.96.043307&rft_dat=%3Cproquest_cross%3E1989597882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989597882&rft_id=info:pmid/29347602&rfr_iscdi=true |