Loading…

Control of accuracy in the Wang-Landau algorithm

The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy o...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307
Main Authors: Barash, L Yu, Fadeeva, M A, Shchur, L N
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3
cites cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3
container_end_page 043307
container_issue 4-1
container_start_page 043307
container_title Physical review. E
container_volume 96
creator Barash, L Yu
Fadeeva, M A
Shchur, L N
description The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.
doi_str_mv 10.1103/PhysRevE.96.043307
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989597882</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989597882</sourcerecordid><originalsourceid>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</originalsourceid><addsrcrecordid>eNo9kEtLAzEYRYMottT-ARcySzdTv7yTpZRahYIiisuQZDLtyDxqMiP031vpY3Xv4p67OAjdYphhDPThbbNL7-F3MdNiBoxSkBdoTJiEHIDTy3NnfISmKX0DABagJSbXaEQ0ZVIAGSOYd20fuzrrysx6P0Trd1nVZv0mZF-2Xecr2xZ2yGy97mLVb5obdFXaOoXpMSfo82nxMX_OV6_Ll_njKveUkz4XIJh3qiA8MM6to4AxFdyRIjgtFGEuWJCYU-AFYdhKR7EqS8cZVdqVlk7Q_eF3G7ufIaTeNFXyoa5tG7ohGayV5loqRfZTcpj62KUUQ2m2sWps3BkM5l-WOckyWpiDrD10d_wfXBOKM3JSQ_8AKs9kqw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989597882</pqid></control><display><type>article</type><title>Control of accuracy in the Wang-Landau algorithm</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</creator><creatorcontrib>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</creatorcontrib><description>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.96.043307</identifier><identifier>PMID: 29347602</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</citedby><cites>FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29347602$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Barash, L Yu</creatorcontrib><creatorcontrib>Fadeeva, M A</creatorcontrib><creatorcontrib>Shchur, L N</creatorcontrib><title>Control of accuracy in the Wang-Landau algorithm</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEYRYMottT-ARcySzdTv7yTpZRahYIiisuQZDLtyDxqMiP031vpY3Xv4p67OAjdYphhDPThbbNL7-F3MdNiBoxSkBdoTJiEHIDTy3NnfISmKX0DABagJSbXaEQ0ZVIAGSOYd20fuzrrysx6P0Trd1nVZv0mZF-2Xecr2xZ2yGy97mLVb5obdFXaOoXpMSfo82nxMX_OV6_Ll_njKveUkz4XIJh3qiA8MM6to4AxFdyRIjgtFGEuWJCYU-AFYdhKR7EqS8cZVdqVlk7Q_eF3G7ufIaTeNFXyoa5tG7ohGayV5loqRfZTcpj62KUUQ2m2sWps3BkM5l-WOckyWpiDrD10d_wfXBOKM3JSQ_8AKs9kqw</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Barash, L Yu</creator><creator>Fadeeva, M A</creator><creator>Shchur, L N</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201710</creationdate><title>Control of accuracy in the Wang-Landau algorithm</title><author>Barash, L Yu ; Fadeeva, M A ; Shchur, L N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barash, L Yu</creatorcontrib><creatorcontrib>Fadeeva, M A</creatorcontrib><creatorcontrib>Shchur, L N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barash, L Yu</au><au>Fadeeva, M A</au><au>Shchur, L N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Control of accuracy in the Wang-Landau algorithm</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-10</date><risdate>2017</risdate><volume>96</volume><issue>4-1</issue><spage>043307</spage><epage>043307</epage><pages>043307-043307</pages><artnum>043307</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>The Wang-Landau (WL) algorithm has been widely used for simulations in many areas of physics. Our analysis of the WL algorithm explains its properties and shows that the difference of the largest eigenvalue of the transition matrix in the energy space from unity can be used to control the accuracy of estimating the density of states. Analytic expressions for the matrix elements are given in the case of the one-dimensional Ising model. The proposed method is further confirmed by numerical results for the one-dimensional and two-dimensional Ising models and also the two-dimensional Potts model.</abstract><cop>United States</cop><pmid>29347602</pmid><doi>10.1103/PhysRevE.96.043307</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-10, Vol.96 (4-1), p.043307-043307, Article 043307
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1989597882
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Control of accuracy in the Wang-Landau algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Control%20of%20accuracy%20in%20the%20Wang-Landau%20algorithm&rft.jtitle=Physical%20review.%20E&rft.au=Barash,%20L%20Yu&rft.date=2017-10&rft.volume=96&rft.issue=4-1&rft.spage=043307&rft.epage=043307&rft.pages=043307-043307&rft.artnum=043307&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.96.043307&rft_dat=%3Cproquest_cross%3E1989597882%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c352t-6064cb8d25e455ab3011365b2deb96824bea0715305d241a7b318ffb54389bfa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989597882&rft_id=info:pmid/29347602&rfr_iscdi=true