Loading…
Double-Weyl Phonons in Transition-Metal Monosilicides
We employed ab initio calculations to identify a class of crystalline materials of MSi (M=Fe, Co, Mn, Re, Ru) having double-Weyl points in both their acoustic and optical phonon spectra. They exhibit novel topological points termed "spin-1 Weyl point" at the Brillouin zone center and "...
Saved in:
Published in: | Physical review letters 2018-01, Vol.120 (1), p.016401-016401 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We employed ab initio calculations to identify a class of crystalline materials of MSi (M=Fe, Co, Mn, Re, Ru) having double-Weyl points in both their acoustic and optical phonon spectra. They exhibit novel topological points termed "spin-1 Weyl point" at the Brillouin zone center and "charge-2 Dirac point" at the zone corner. The corresponding gapless surface phonon dispersions are two helicoidal sheets whose isofrequency contours form a single noncontractible loop in the surface Brillouin zone. In addition, the global structure of the surface bands can be analytically expressed as double-periodic Weierstrass elliptic functions. |
---|---|
ISSN: | 1079-7114 |
DOI: | 10.1103/PhysRevLett.120.016401 |