Loading…
Quadrature squeezing of a higher-order sideband spectrum in cavity optomechanics
We propose an efficient scheme to generate quadrature squeezing of a higher-order sideband spectrum in an optomechanical system. This is achieved by exploiting a well-established optomechanical circumstance, where a second-order nonlinearity is embedded into the optomechanical cavity driven by a str...
Saved in:
Published in: | Optics letters 2018-01, Vol.43 (1), p.9-12 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose an efficient scheme to generate quadrature squeezing of a higher-order sideband spectrum in an optomechanical system. This is achieved by exploiting a well-established optomechanical circumstance, where a second-order nonlinearity is embedded into the optomechanical cavity driven by a strong control field and a weak probe pulse. Using experimentally achievable parameters, we demonstrate that the second-order nonlinearity intensity and the frequency detuning of a control field allow us to modify the amplitude of higher-order sidebands and improve the amount of squeezing of a higher-order sideband spectrum. Furthermore, in the presence of a strong second-order nonlinearity, an optimizing quadrature squeezing of a higher-order sideband spectrum can be achieved, which provides a practical opportunity to design the squeezed frequency combs and other precision measurements. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.43.000009 |