Loading…

Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion

Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in eith...

Full description

Saved in:
Bibliographic Details
Published in:Histochemistry and cell biology 2018-04, Vol.149 (4), p.405-415
Main Authors: Kitazawa, Riko, Haraguchi, Ryuma, Fukushima, Mana, Kitazawa, Sohei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433
cites cdi_FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433
container_end_page 415
container_issue 4
container_start_page 405
container_title Histochemistry and cell biology
container_volume 149
creator Kitazawa, Riko
Haraguchi, Ryuma
Fukushima, Mana
Kitazawa, Sohei
description Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.
doi_str_mv 10.1007/s00418-018-1639-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1990489295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990489295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMozvjxA9xIwY2bal6SSRN3In6BqAsFdyFNU6dDpxnz2oX-ejNURQQXIeTl3JtwCDkAegKUFqdIqQCV07RAcp1_bJApCM5yAP2ySaZUC5XLNJmQHcQFpTDTjG2TCdN8JrXkU3L_aPt5aMNr4zIXuqrpm9BhFupsbmOV9Q3i4M-yGFq_HgbsfXCtxR6zphuP7Xufwq3HlNwjW7Vt0e9_7bvk-ery6eImv3u4vr04v8ud4KrPGeWFohVTpWTArK1taXnBZ75UVEjLS6nBgXZKee8Ek5yKqqhAVXUJUAjOd8nx2LuK4W3w2Jtlg863re18GNCA1lQozfQsoUd_0EUYYpd-t6Y4B6qkSBSMlIsBMfrarGKztPHdADVr2WaUbZJss5ZtPlLm8Kt5KJe--kl8200AGwFMV92rj7-e_rf1E2_jifc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993310864</pqid></control><display><type>article</type><title>Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion</title><source>Springer Link</source><creator>Kitazawa, Riko ; Haraguchi, Ryuma ; Fukushima, Mana ; Kitazawa, Sohei</creator><creatorcontrib>Kitazawa, Riko ; Haraguchi, Ryuma ; Fukushima, Mana ; Kitazawa, Sohei</creatorcontrib><description>Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.</description><identifier>ISSN: 0948-6143</identifier><identifier>EISSN: 1432-119X</identifier><identifier>DOI: 10.1007/s00418-018-1639-z</identifier><identifier>PMID: 29356963</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Animals ; Arthritis ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Bone growth ; Bone resorption ; Bone tumors ; Calcium homeostasis ; Cell Biology ; Developmental Biology ; Histone H3 ; Homeostasis ; Humans ; Long bone ; Mechanical loading ; Metaphysis ; Metastases ; NF-κB protein ; Osteoblasts ; Osteoclasts ; Osteoclasts - metabolism ; Osteoclasts - pathology ; Osteogenesis ; Osteolysis ; Osteolysis - metabolism ; Osteolysis - pathology ; Osteoprogenitor cells ; Point mutation ; RANK Ligand - metabolism ; Review ; Stromal cells ; TRANCE protein ; Transcription factors ; Vitamin D</subject><ispartof>Histochemistry and cell biology, 2018-04, Vol.149 (4), p.405-415</ispartof><rights>Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Histochemistry and Cell Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433</citedby><cites>FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433</cites><orcidid>0000-0002-7466-7356</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29356963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kitazawa, Riko</creatorcontrib><creatorcontrib>Haraguchi, Ryuma</creatorcontrib><creatorcontrib>Fukushima, Mana</creatorcontrib><creatorcontrib>Kitazawa, Sohei</creatorcontrib><title>Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion</title><title>Histochemistry and cell biology</title><addtitle>Histochem Cell Biol</addtitle><addtitle>Histochem Cell Biol</addtitle><description>Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.</description><subject>Animals</subject><subject>Arthritis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Bone growth</subject><subject>Bone resorption</subject><subject>Bone tumors</subject><subject>Calcium homeostasis</subject><subject>Cell Biology</subject><subject>Developmental Biology</subject><subject>Histone H3</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Long bone</subject><subject>Mechanical loading</subject><subject>Metaphysis</subject><subject>Metastases</subject><subject>NF-κB protein</subject><subject>Osteoblasts</subject><subject>Osteoclasts</subject><subject>Osteoclasts - metabolism</subject><subject>Osteoclasts - pathology</subject><subject>Osteogenesis</subject><subject>Osteolysis</subject><subject>Osteolysis - metabolism</subject><subject>Osteolysis - pathology</subject><subject>Osteoprogenitor cells</subject><subject>Point mutation</subject><subject>RANK Ligand - metabolism</subject><subject>Review</subject><subject>Stromal cells</subject><subject>TRANCE protein</subject><subject>Transcription factors</subject><subject>Vitamin D</subject><issn>0948-6143</issn><issn>1432-119X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMozvjxA9xIwY2bal6SSRN3In6BqAsFdyFNU6dDpxnz2oX-ejNURQQXIeTl3JtwCDkAegKUFqdIqQCV07RAcp1_bJApCM5yAP2ySaZUC5XLNJmQHcQFpTDTjG2TCdN8JrXkU3L_aPt5aMNr4zIXuqrpm9BhFupsbmOV9Q3i4M-yGFq_HgbsfXCtxR6zphuP7Xufwq3HlNwjW7Vt0e9_7bvk-ery6eImv3u4vr04v8ud4KrPGeWFohVTpWTArK1taXnBZ75UVEjLS6nBgXZKee8Ek5yKqqhAVXUJUAjOd8nx2LuK4W3w2Jtlg863re18GNCA1lQozfQsoUd_0EUYYpd-t6Y4B6qkSBSMlIsBMfrarGKztPHdADVr2WaUbZJss5ZtPlLm8Kt5KJe--kl8200AGwFMV92rj7-e_rf1E2_jifc</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Kitazawa, Riko</creator><creator>Haraguchi, Ryuma</creator><creator>Fukushima, Mana</creator><creator>Kitazawa, Sohei</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-7466-7356</orcidid></search><sort><creationdate>20180401</creationdate><title>Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion</title><author>Kitazawa, Riko ; Haraguchi, Ryuma ; Fukushima, Mana ; Kitazawa, Sohei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Arthritis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Bone growth</topic><topic>Bone resorption</topic><topic>Bone tumors</topic><topic>Calcium homeostasis</topic><topic>Cell Biology</topic><topic>Developmental Biology</topic><topic>Histone H3</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Long bone</topic><topic>Mechanical loading</topic><topic>Metaphysis</topic><topic>Metastases</topic><topic>NF-κB protein</topic><topic>Osteoblasts</topic><topic>Osteoclasts</topic><topic>Osteoclasts - metabolism</topic><topic>Osteoclasts - pathology</topic><topic>Osteogenesis</topic><topic>Osteolysis</topic><topic>Osteolysis - metabolism</topic><topic>Osteolysis - pathology</topic><topic>Osteoprogenitor cells</topic><topic>Point mutation</topic><topic>RANK Ligand - metabolism</topic><topic>Review</topic><topic>Stromal cells</topic><topic>TRANCE protein</topic><topic>Transcription factors</topic><topic>Vitamin D</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kitazawa, Riko</creatorcontrib><creatorcontrib>Haraguchi, Ryuma</creatorcontrib><creatorcontrib>Fukushima, Mana</creatorcontrib><creatorcontrib>Kitazawa, Sohei</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Histochemistry and cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kitazawa, Riko</au><au>Haraguchi, Ryuma</au><au>Fukushima, Mana</au><au>Kitazawa, Sohei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion</atitle><jtitle>Histochemistry and cell biology</jtitle><stitle>Histochem Cell Biol</stitle><addtitle>Histochem Cell Biol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>149</volume><issue>4</issue><spage>405</spage><epage>415</epage><pages>405-415</pages><issn>0948-6143</issn><eissn>1432-119X</eissn><abstract>Hard tissue homeostasis is regulated by the balance between bone formation by osteoblasts and bone resorption by osteoclasts. This physiologic process allows adaptation to mechanical loading and calcium homeostasis. Under pathologic conditions, however, this process is ill-balanced resulting in either over-resorption or over-formation of hard tissue. Local over-resorption by osteoclasts is typically observed in osteolytic metastases of malignancies, autoimmune arthritis, and giant cell tumor of bone (GCTB). In tumor-related local osteolysis, tumor-derived osteoclast-activating factors induce bone resorption not by directly acting on osteoclasts but by indirectly upregulating receptor activator of NFκB ligand (RANKL) on osteoblastic cells. Similarly, synovial tissue in the autoimmune arthritis model does overexpress RANKL and contains numerous osteoclast precursors, and like a landing craft, when it comes in contact with eroded bone surfaces, osteoclast precursors are immediately polarized to become mature osteoclasts, inducing rapidly progressive bone destruction at a late stage of the disease. GCTB, on the other hand, is a common primary bone tumor, usually arising at the metaphysis of the long bone in young adults. After the discovery of RANKL, the concept of GCTB as a tumor of RANKL-expressing stromal cells was established, and comprehensive exosome studies finally disclosed the causative single-point mutation at histone H3.3 (H3F3A) in stromal cells. Thus, osteolytic lesions under various pathological conditions are ultimately attributable to the overexpression of RANKL, which opens up a common, practical and useful therapeutic target for diverse osteolytic conditions.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>29356963</pmid><doi>10.1007/s00418-018-1639-z</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7466-7356</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0948-6143
ispartof Histochemistry and cell biology, 2018-04, Vol.149 (4), p.405-415
issn 0948-6143
1432-119X
language eng
recordid cdi_proquest_miscellaneous_1990489295
source Springer Link
subjects Animals
Arthritis
Biochemistry
Biomedical and Life Sciences
Biomedicine
Bone growth
Bone resorption
Bone tumors
Calcium homeostasis
Cell Biology
Developmental Biology
Histone H3
Homeostasis
Humans
Long bone
Mechanical loading
Metaphysis
Metastases
NF-κB protein
Osteoblasts
Osteoclasts
Osteoclasts - metabolism
Osteoclasts - pathology
Osteogenesis
Osteolysis
Osteolysis - metabolism
Osteolysis - pathology
Osteoprogenitor cells
Point mutation
RANK Ligand - metabolism
Review
Stromal cells
TRANCE protein
Transcription factors
Vitamin D
title Pathologic conditions of hard tissue: role of osteoclasts in osteolytic lesion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T21%3A10%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pathologic%20conditions%20of%20hard%20tissue:%20role%20of%20osteoclasts%20in%20osteolytic%20lesion&rft.jtitle=Histochemistry%20and%20cell%20biology&rft.au=Kitazawa,%20Riko&rft.date=2018-04-01&rft.volume=149&rft.issue=4&rft.spage=405&rft.epage=415&rft.pages=405-415&rft.issn=0948-6143&rft.eissn=1432-119X&rft_id=info:doi/10.1007/s00418-018-1639-z&rft_dat=%3Cproquest_cross%3E1990489295%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-203780d28b6212aafaba3735eb8046a3b691c19c88eec426304d7d18dfb117433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1993310864&rft_id=info:pmid/29356963&rfr_iscdi=true