Loading…

PHA–rubber blends: Synthesis, characterization and biodegradation

Medium chain length polyhydroxyalkanoates (mcl-PHA) and different rubbers; namely natural rubber, nitrile rubber and butadiene rubber were blended at room temperature using solution blending technique. Blends constituted 5%, 10% and 15% of mcl-PHA in different rubbers. Thermogravimetric analysis of...

Full description

Saved in:
Bibliographic Details
Published in:Bioresource technology 2008-07, Vol.99 (11), p.4615-4620
Main Authors: Bhatt, Rachana, Shah, Dishma, Patel, K.C., Trivedi, Ujjval
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Medium chain length polyhydroxyalkanoates (mcl-PHA) and different rubbers; namely natural rubber, nitrile rubber and butadiene rubber were blended at room temperature using solution blending technique. Blends constituted 5%, 10% and 15% of mcl-PHA in different rubbers. Thermogravimetric analysis of mcl-PHA showed the melting temperature of the polymer around 50 °C. Thermal properties of the synthesized blend were studied by Differential Scanning Calorimetry which confirmed effective blending between the polymers. Blending of mcl-PHA with natural rubber led to the synthesis of a different polymer having the melting point of 90 °C. Degradation studies of the blends were carried out using a soil isolate, Pseudomonas sp. 202 for 30 days. Extracellular protein concentration as well as OD 660 due to the growth of Pseudomonas sp. 202 was studied. The degradation of blended plastic material, as evidenced by % weight loss after degradation and increase in the growth of organism correlated with the amount of mcl-PHA present in the sample. Growth of Pseudomonas sp. 202 resulted in 14.63%, 16.12% and 3.84% weight loss of PHA:rubber blends (natural, nitrile and butadiene rubber). Scanning electron microscopic studies after 30 days of incubation further confirmed biodegradation of the films.
ISSN:0960-8524
1873-2976
DOI:10.1016/j.biortech.2007.06.054