Loading…
Jahn–Teller Effect on Framework Flexibility of Hybrid Organic–Inorganic Perovskites
Here we study the Jahn–Teller (JT) effect on framework flexibility of two analogous hybrid organic–inorganic perovskites, [C(NH2)3][Zn(HCOO)3] (1-Zn) and [C(NH2)3][Cu(HCOO)3] (2-Cu). Single-crystal nanoindentation measurements show that the elastic moduli and hardnesses of 1-Zn are up to ∼52.0...
Saved in:
Published in: | The journal of physical chemistry letters 2018-02, Vol.9 (4), p.751-755 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Here we study the Jahn–Teller (JT) effect on framework flexibility of two analogous hybrid organic–inorganic perovskites, [C(NH2)3][Zn(HCOO)3] (1-Zn) and [C(NH2)3][Cu(HCOO)3] (2-Cu). Single-crystal nanoindentation measurements show that the elastic moduli and hardnesses of 1-Zn are up to ∼52.0% and ∼25.0% greater than those of the JT active 2-Cu. Temperature-dependent X-ray diffraction measurements indicate that the thermal expansion along the b-axis is switched from negative to positive by replacing Zn2+ with Cu2+ on the B-site. These stark distinctions in framework flexibility are primarily attributed to the ∼10.0% elongation of Cu–O bonds induced by the JT effect and associated alterations in octahedral tilting and hydrogen-bonding. Our results demonstrate the prominence of the JT effect in the emerging hybrid perovskites and highlight the possibilities of tuning materials’ properties using orbital order. |
---|---|
ISSN: | 1948-7185 1948-7185 |
DOI: | 10.1021/acs.jpclett.7b03229 |