Loading…

Individuals with varus thrust do not increase knee adduction when running with body borne load

Osteoarthritis (OA) is a common occupational hazard for service members. This study quantified how body borne load impacts knee biomechanics for participants who do and do not present varus thrust (range of knee adduction motion exhibited from heel strike to mid-stance (0–51%)) during over-ground ru...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanics 2018-03, Vol.69, p.97-102
Main Authors: Brown, Tyler N., Kaplan, Jonathan T., Cameron, Sarah E., Seymore, Kayla D., Ramsay, John W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Osteoarthritis (OA) is a common occupational hazard for service members. This study quantified how body borne load impacts knee biomechanics for participants who do and do not present varus thrust (range of knee adduction motion exhibited from heel strike to mid-stance (0–51%)) during over-ground running. Eighteen (9 varus thrust and 9 control) military personnel had knee biomechanics recorded when running with three load conditions (light, ∼6 kg, medium, 15% BW, and heavy, 30% BW). Subject-based means for knee biomechanics were calculated and submitted to a RM ANOVA to test the main effects and possible interactions between load and varus thrust group. The varus thrust group exhibited greater varus thrust (p = .001) and peak stance (PS, 0–100%) knee adduction (p = .009) posture compared to the control group with the light load, but not for the medium (p = .741 and p = .825) or heavy loads (p = .142 and p = .429). With the heavy load, varus thrust group reduced varus thrust (p = .023), whereas, the control group increased varus thrust (p = .037) compared to the light load, and increased PS knee adduction moment compared to light (p = .006) and medium loads (p = .031). The varus thrust group, however, exhibited no significant difference in knee adduction moment between any load (p = .174). With the addition of body borne load, varus thrust participants exhibited a significant reduction in knee biomechanics related to OA; whereas, control participants adopted knee biomechanics, including greater varus thrust and knee adduction moment, related to the development of OA.
ISSN:0021-9290
1873-2380
DOI:10.1016/j.jbiomech.2018.01.003