Loading…
E-Z isomerization in Suzuki cross-couplings of haloenones: ligand effects and evidence for a separate catalytic cycle
Suzuki cross-coupling of haloalkenes is generally assumed to occur with retention of the alkene stereochemistry. While studying Suzuki cross-couplings on E-1,2-dichlorovinyl phenyl ketone, we were surprised to observe extensive isomerization. More surprisingly, the ligand employed strongly influence...
Saved in:
Published in: | Organic & biomolecular chemistry 2018, Vol.16 (7), p.1134-1143 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Suzuki cross-coupling of haloalkenes is generally assumed to occur with retention of the alkene stereochemistry. While studying Suzuki cross-couplings on E-1,2-dichlorovinyl phenyl ketone, we were surprised to observe extensive isomerization. More surprisingly, the ligand employed strongly influenced the degree of isomerization: DPEphos and Xantphos led to 96% isomerized cross-coupled product whereas reactions in the absence of a phosphine ligand, or reactions employing t-BuXantphos, gave 94% retention of stereochemistry. While E-Z isomerization in Pd-catalyzed vinylic couplings has previously been attributed to events within the cross-coupling catalytic cycle, we present experimental and computational evidence for a separate Pd-catalyzed isomerization process in these reactions. |
---|---|
ISSN: | 1477-0520 1477-0539 |
DOI: | 10.1039/c7ob02925j |