Loading…
3‑Carboxybenzoboroxole Functionalized Polyethylenimine Modified Magnetic Graphene Oxide Nanocomposites for Human Plasma Glycoproteins Enrichment under Physiological Conditions
Boronate affinity materials have been successfully used for the selective recognition of glycoproteins. However, by such materials, the large-scale glycoproteins enrichment from human plasma under physiological conditions is rarely reported. In this work, 3-carboxybenzoboroxole (CBX) functionalized...
Saved in:
Published in: | Analytical chemistry (Washington) 2018-02, Vol.90 (4), p.2671-2677 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Boronate affinity materials have been successfully used for the selective recognition of glycoproteins. However, by such materials, the large-scale glycoproteins enrichment from human plasma under physiological conditions is rarely reported. In this work, 3-carboxybenzoboroxole (CBX) functionalized polyethylenimine (PEI) modified magnetic graphene oxide nanocomposites were synthesized. Benefitting from the low pK a value of CBX (∼6.9) and PEI dendrimer-assisted multivalent binding, the Freundlich constant (K F) for the adsorption of horseradish peroxidase (HRP) was 3.0–7.3 times higher than that obtained by previous work, displaying the high enrichment capacity. Moreover, PEI could improve the hydrophilicity of nanocomposites and reduce nonglycoprotein adsorption. Therefore, such nanocomposites were successfully applied to the analysis of human plasma glycoproteome under physiological conditions, and the identified glycoproteins number and recognition selectivity was increased when compared to the results obtained by previous boronic acid-functionalized particles (Sil@Poly(APBA-co-MBAAm)) under common alkaline condition (137 vs 78 and 67.8% vs 57.8%, respectively). In addition, thrombin (F2), an important plasma glycoprotein, labile under alkaline conditions, was specifically identified by our method, demonstrating the great promise of such nanocomposites in the deep-coverage glycoproteome analysis. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/acs.analchem.7b04451 |