Loading…
Gold Nanoparticle-Collagen Gels for Soft Tissue Augmentation
Collagen soft tissue fillers suffer from fast reabsorption, which minimizes their use as a tissue-engineered construct. Extensive cross-linking can be utilized to extend longevity, but changes in microstructure and biomechanics can have deleterious effects. To enhance longevity while still achieving...
Saved in:
Published in: | Tissue engineering. Part A 2018-07, Vol.24 (13-14), p.191-1098 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collagen soft tissue fillers suffer from fast reabsorption, which minimizes their use as a tissue-engineered construct. Extensive cross-linking can be utilized to extend longevity, but changes in microstructure and biomechanics can have deleterious effects. To enhance longevity while still achieving a natural microstructure, gold nanoparticles (AuNPs) were conjugated to fibrilized collagen and homogenized into an injectable form for use as a soft tissue filler. A long-term animal study in Yucatan swine was conducted to assess biocompatibility and longevity. Two formulations of the AuNP-collagen were compared to porcine cross-linked collagen and commercially available hyaluronic acid (HA). The results of the study demonstrated that the AuNPs may provide enhanced longevity over 6 months compared to HA and cross-linked collagen. Irritation scores indicated that the AuNP-collagen construct (AuNP-CC) demonstrated low irritation compared to the cross-linked collagen and HA while histology scores demonstrated good biocompatibility. Overall, it may be possible to utilize AuNPs to stabilize and increase the longevity of CC while still achieving biocompatibility. |
---|---|
ISSN: | 1937-3341 1937-335X |
DOI: | 10.1089/ten.tea.2017.0385 |