Loading…

Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose

Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37°C, pH 5.5 and varied substrate levels. In additio...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2004-09, Vol.87 (7), p.813-822
Main Authors: Yu, Han-Qing, Mu, Yang, Fang, Herbert H. P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3
cites cdi_FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3
container_end_page 822
container_issue 7
container_start_page 813
container_title Biotechnology and bioengineering
container_volume 87
creator Yu, Han-Qing
Mu, Yang
Fang, Herbert H. P.
description Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37°C, pH 5.5 and varied substrate levels. In addition to usual acidogenic products, i‐butyrate, valerate, i‐valerate, caproate, and propanol were also produced at a significant level. Thermodynamic analysis shows that valerate might be formed through the reaction requiring hydrogen as electron donor and consuming of propionate and carbon dioxide. Caproate was most likely produced directly from butyrate, hydrogen, and carbon dioxide. The minimum amount of Gibbs free energies needed to sustain isomerization of butyrate and valerate were approximately 5.7–5.8 and 4.5–4.6 kJ/mol, respectively. Propanol was produced from acetate, hydrogen, and carbon dioxide with a minimum amount of Gibbs free energy of 41.8–42.0 kJ/mol. Formation of butanol was controlled more by substrate level or population dynamics than by thermodynamics. © 2004 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.20190
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19931018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19931018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3</originalsourceid><addsrcrecordid>eNp10E1v1DAQBmCrArVL2wN_AOVCJQ5px3FiO0eoSltpRcV2odysWWdMDUm82FnB_nvSbmhPnEYjPfOhl7HXHE45QHG28sNpAbyGPTbjUKscihpesBkAyFxUdXHAXqX0Y2yVlnKfHfBKiLIEPWOfl_cUu9Bse-y8zbDHdpt8yoLL1jE0GztkLsQOBx_6zPdZRyms7337YK1vwnfqafIt2iEkOmIvHbaJjqd6yL58vFieX-Xzm8vr8_fz3FaFgNw5TZw7tXIgKtSouV6VvJRCNbVT46sOJZIGqUnLoim1sIoaiQ2WCooKxSE72e0d__y1oTSYzidLbYs9hU0yvK4FB65H-G4HbQwpRXJmHX2HcWs4mIf8zJifecxvtG-mpZtVR82znAIbwdsJYLLYuoi99enZSVCy0mp0Zzv327e0_f9F8-F6-e90vpvwaaA_TxMYfxqphKrM3adLUy8W88W36tZ8FX8BLE-WjQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19931018</pqid></control><display><type>article</type><title>Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yu, Han-Qing ; Mu, Yang ; Fang, Herbert H. P.</creator><creatorcontrib>Yu, Han-Qing ; Mu, Yang ; Fang, Herbert H. P.</creatorcontrib><description>Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37°C, pH 5.5 and varied substrate levels. In addition to usual acidogenic products, i‐butyrate, valerate, i‐valerate, caproate, and propanol were also produced at a significant level. Thermodynamic analysis shows that valerate might be formed through the reaction requiring hydrogen as electron donor and consuming of propionate and carbon dioxide. Caproate was most likely produced directly from butyrate, hydrogen, and carbon dioxide. The minimum amount of Gibbs free energies needed to sustain isomerization of butyrate and valerate were approximately 5.7–5.8 and 4.5–4.6 kJ/mol, respectively. Propanol was produced from acetate, hydrogen, and carbon dioxide with a minimum amount of Gibbs free energy of 41.8–42.0 kJ/mol. Formation of butanol was controlled more by substrate level or population dynamics than by thermodynamics. © 2004 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.20190</identifier><identifier>PMID: 15334408</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>acidogenesis ; alcohols ; Alcohols - metabolism ; Bacteria, Anaerobic - metabolism ; Biological and medical sciences ; Bioreactors - microbiology ; Biotechnology ; Energy Metabolism - physiology ; Fatty Acids, Volatile - metabolism ; Fundamental and applied biological sciences. Psychology ; Hydrogen-Ion Concentration ; lactose ; Lactose - metabolism ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Biological ; Models, Chemical ; Oxygen Consumption - physiology ; Sewage - microbiology ; thermodynamic ; Thermodynamics ; volatile fatty acids (VFA) ; Water Purification - methods</subject><ispartof>Biotechnology and bioengineering, 2004-09, Vol.87 (7), p.813-822</ispartof><rights>Copyright © 2004 Wiley Periodicals, Inc.</rights><rights>2004 INIST-CNRS</rights><rights>Copyright 2004 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3</citedby><cites>FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=16076587$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15334408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Han-Qing</creatorcontrib><creatorcontrib>Mu, Yang</creatorcontrib><creatorcontrib>Fang, Herbert H. P.</creatorcontrib><title>Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37°C, pH 5.5 and varied substrate levels. In addition to usual acidogenic products, i‐butyrate, valerate, i‐valerate, caproate, and propanol were also produced at a significant level. Thermodynamic analysis shows that valerate might be formed through the reaction requiring hydrogen as electron donor and consuming of propionate and carbon dioxide. Caproate was most likely produced directly from butyrate, hydrogen, and carbon dioxide. The minimum amount of Gibbs free energies needed to sustain isomerization of butyrate and valerate were approximately 5.7–5.8 and 4.5–4.6 kJ/mol, respectively. Propanol was produced from acetate, hydrogen, and carbon dioxide with a minimum amount of Gibbs free energy of 41.8–42.0 kJ/mol. Formation of butanol was controlled more by substrate level or population dynamics than by thermodynamics. © 2004 Wiley Periodicals, Inc.</description><subject>acidogenesis</subject><subject>alcohols</subject><subject>Alcohols - metabolism</subject><subject>Bacteria, Anaerobic - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>Energy Metabolism - physiology</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen-Ion Concentration</subject><subject>lactose</subject><subject>Lactose - metabolism</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Oxygen Consumption - physiology</subject><subject>Sewage - microbiology</subject><subject>thermodynamic</subject><subject>Thermodynamics</subject><subject>volatile fatty acids (VFA)</subject><subject>Water Purification - methods</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10E1v1DAQBmCrArVL2wN_AOVCJQ5px3FiO0eoSltpRcV2odysWWdMDUm82FnB_nvSbmhPnEYjPfOhl7HXHE45QHG28sNpAbyGPTbjUKscihpesBkAyFxUdXHAXqX0Y2yVlnKfHfBKiLIEPWOfl_cUu9Bse-y8zbDHdpt8yoLL1jE0GztkLsQOBx_6zPdZRyms7337YK1vwnfqafIt2iEkOmIvHbaJjqd6yL58vFieX-Xzm8vr8_fz3FaFgNw5TZw7tXIgKtSouV6VvJRCNbVT46sOJZIGqUnLoim1sIoaiQ2WCooKxSE72e0d__y1oTSYzidLbYs9hU0yvK4FB65H-G4HbQwpRXJmHX2HcWs4mIf8zJifecxvtG-mpZtVR82znAIbwdsJYLLYuoi99enZSVCy0mp0Zzv327e0_f9F8-F6-e90vpvwaaA_TxMYfxqphKrM3adLUy8W88W36tZ8FX8BLE-WjQ</recordid><startdate>20040930</startdate><enddate>20040930</enddate><creator>Yu, Han-Qing</creator><creator>Mu, Yang</creator><creator>Fang, Herbert H. P.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20040930</creationdate><title>Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose</title><author>Yu, Han-Qing ; Mu, Yang ; Fang, Herbert H. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>acidogenesis</topic><topic>alcohols</topic><topic>Alcohols - metabolism</topic><topic>Bacteria, Anaerobic - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>Energy Metabolism - physiology</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen-Ion Concentration</topic><topic>lactose</topic><topic>Lactose - metabolism</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Oxygen Consumption - physiology</topic><topic>Sewage - microbiology</topic><topic>thermodynamic</topic><topic>Thermodynamics</topic><topic>volatile fatty acids (VFA)</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Han-Qing</creatorcontrib><creatorcontrib>Mu, Yang</creatorcontrib><creatorcontrib>Fang, Herbert H. P.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Han-Qing</au><au>Mu, Yang</au><au>Fang, Herbert H. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2004-09-30</date><risdate>2004</risdate><volume>87</volume><issue>7</issue><spage>813</spage><epage>822</epage><pages>813-822</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Thermodynamic analysis on the acidogenesis of lactose was performed to evaluate the different acidogenic patterns and mechanisms by using Gibbs free energy calculation. Batch acidogenesis of lactose was investigated by using an enriched culture at 37°C, pH 5.5 and varied substrate levels. In addition to usual acidogenic products, i‐butyrate, valerate, i‐valerate, caproate, and propanol were also produced at a significant level. Thermodynamic analysis shows that valerate might be formed through the reaction requiring hydrogen as electron donor and consuming of propionate and carbon dioxide. Caproate was most likely produced directly from butyrate, hydrogen, and carbon dioxide. The minimum amount of Gibbs free energies needed to sustain isomerization of butyrate and valerate were approximately 5.7–5.8 and 4.5–4.6 kJ/mol, respectively. Propanol was produced from acetate, hydrogen, and carbon dioxide with a minimum amount of Gibbs free energy of 41.8–42.0 kJ/mol. Formation of butanol was controlled more by substrate level or population dynamics than by thermodynamics. © 2004 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>15334408</pmid><doi>10.1002/bit.20190</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2004-09, Vol.87 (7), p.813-822
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_19931018
source Wiley-Blackwell Read & Publish Collection
subjects acidogenesis
alcohols
Alcohols - metabolism
Bacteria, Anaerobic - metabolism
Biological and medical sciences
Bioreactors - microbiology
Biotechnology
Energy Metabolism - physiology
Fatty Acids, Volatile - metabolism
Fundamental and applied biological sciences. Psychology
Hydrogen-Ion Concentration
lactose
Lactose - metabolism
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Models, Biological
Models, Chemical
Oxygen Consumption - physiology
Sewage - microbiology
thermodynamic
Thermodynamics
volatile fatty acids (VFA)
Water Purification - methods
title Thermodynamic analysis of product formation in mesophilic acidogenesis of lactose
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T10%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20analysis%20of%20product%20formation%20in%20mesophilic%20acidogenesis%20of%20lactose&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Yu,%20Han-Qing&rft.date=2004-09-30&rft.volume=87&rft.issue=7&rft.spage=813&rft.epage=822&rft.pages=813-822&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.20190&rft_dat=%3Cproquest_cross%3E19931018%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5230-ff8e11f7bf035a8a818b414637d9f7000fa6ae8068e862d483c7ed6ada47025a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=19931018&rft_id=info:pmid/15334408&rfr_iscdi=true