Loading…

Microbial mats as bioreactors: populations, processes, and products

Microbial mats are dynamic and complex ecosystems exhibiting spatial and temporal heterogeneity. The physical/chemical environment is typified by steep gradients and distinct microenvironments. These microenvironments support a great diversity of species with a wide range of metabolic processes. The...

Full description

Saved in:
Bibliographic Details
Published in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2005-04, Vol.219 (1), p.87-100
Main Authors: Visscher, Pieter T., Stolz, John F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Microbial mats are dynamic and complex ecosystems exhibiting spatial and temporal heterogeneity. The physical/chemical environment is typified by steep gradients and distinct microenvironments. These microenvironments support a great diversity of species with a wide range of metabolic processes. These processes often result in coupled reactions and biogeochemical cycles, and produce important end products such as trace gases and mineral precipitates. The latter can impact the composition and character of the sediment, imparting a “biosignature.” These biosignatures can be preserved in the rock record and are useful in the interpretation of fossil record on Earth and possibly as an indication of life on other planetary bodies. The modern marine stromatolites of the Exuma Cays, Bahamas, provide an ideal system for studying the populations, processes, and products in a microbial ecosystem using a multidisciplinary approach. In order to acquire redox energy, microbial populations need to carry out metabolic reactions at rates faster than the equivalent chemical (abiotic) reactions. As such, microbes can be viewed as bioreactors that preferably oxidize carbon to CO 2 to maximize the energy yield. The study of the microbial role in carbonate sedimentation and lithification in these stromatolites provides a picture of microbial mats as bioreactors producing a biosignature.
ISSN:0031-0182
1872-616X
DOI:10.1016/j.palaeo.2004.10.016